
DIVISOR OPERATOR

LINAS VEPSTAS

ABSTRACT. The “divisor operator” is defined as an infinite-dimensional matrix operator,
encoding Dirichlet convolution in a linear algebra setting. The finite-dimensional variant
is known as the Redheffer matrix. As a matrix operator, it naturally acts on the Banach
space `1 of summable sequences. On this space, it is not a bounded operator. It’s point
spectrum consists of all completely multiplicative arithmetic series (that are `1-summable).
A variety of curious hypothesis and observations are stated.

INTRODUCTION

This reviews various low-grade ideas surrounding something that I want to call the
“divisor operator”. It is a variation on a “Redheffer matrix”.[3] It’s catnip for the following
reason: some of it’s eigenvalues are parameterized by the Riemann zeta function. One
might vaguely hope that exploration in this relatively novel direction can shed insight on
the Riemann hypothesis. In practice, it’s more of an exercise bridging across several well-
established mathematical disciplines.

DIRICHLET CONVOLUTION

Define f (n) and g(n) arithmetic sequences, that is, functions from the natural numbers
N to the complex numbers C. Define Dirichlet convolution as usual:

( f ∗g)(n) = ∑
d|n

f (d)g
(n

d

)
This is commutative, associative, Abelian, so its a form of “addition”. There is a concept
of zero. The zero is

ε (n) =

{
1 if n = 1
0 otherwise

so that ( f ∗ ε) = (ε ∗ f ) = f for any f . It is conventional to define the one-unit as

1(n) = 1 for all n

Define the Mobius µ arithmetic sequence as minus-one, i.e.

µ ∗1 = ε

As such, Dirichlet convolution, together with ε , 1 and µ can be used to create a model of
arithmetic. The word “model” is used here in the model-theoretic sense. A model of arith-
metic is a mapping from the axioms of arithmetic (together with the logical connectives
and other parts of first-order logic, e.g. the tautologies) to the space of countably-infinite
sequences. As a model, it contains “nothing more” than arithmetic; yet, because the space
of countably-infinite sequences is much richer than the set of natural numbers, it suggests
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ways in which “ordinary arithmetic” can be extended in unusual ways. The reader is en-
couraged to loosely envision Cohen’s “forcing” as an inspiration.

To be precise, there are several models: the structure (∗,ε,1) provides a model for the
non-negative integers under addition(+,0,1). The structure (∗,µ,ε,1) is an extension that
provides a model for all of the integers Z = (+,−1,0,1) where Z is understood to stand
for the first-order language LZ of expressions obtained from these operators and constants,
together with equality as a relation. As usual, “less than” < provides a total order on the
integers.

Conjecture. The relation < on the integers embeds into the lexicographic ordering of
strings.

Proof. The above is surely a lemma not a conjecture, but I’m super-lazy right now to
super-triple-check. Right? “Homework.” �

As a matrix operator. The one-unit can also be written as an infinite-dimensional matrix.
Picking the letter C for “convolution”, write

( f ∗1)(n) = ∑
d|n

f (d) =
∞

∑
k=1

Cnk f (k)

with Cnk having matrix entries

Cnk =

{
1 if k divides n
0 otherwise

The visually explicit lower-triangular form is

C =



1
1 1
1 0 1
1 1 0 1
1 0 0 0 1
1 1 1 0 0 1
...

. . .


That is, the k’th column is just a repeating pattern with a one in it for every multiple of k.
This can be emphasized by using the unit sequence 1 = 1(n) in the columns, and writing:

Cnk =

{
1
( n

k

)
if k divides n

0 otherwise

This helps make clear that only multiples of k show up, and there are zeros otherwise. It
also helps make clear that C can be decomposed as a sum of “diagonal rays”, each “ray”
progressing along n/k = const. The two most obvious rays are the diagonal: n/k = 1 and
the first column: n/k =∞. The next obvious ray is n/k = 2 which is just saying “down two,
over one, place a 1 in that spot” can be iterated. The rays of non-zero entries are illustrated
below. All matrix entries not on a ray are zero.
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It can be more convenient to work with the transpose, which is upper-triangular, defined
as

D =C>

The letter D stands for “divisor”, as it has obvious relationships to the divisor function.
One reason that D is nicer is that it maps finite sequences to finite sequences of the same
length. That is, if f (n) = 0 for all n≥ L so that f is a finite sequence of length L, then D f
is also a sequence of length L.

Much of what follows will be concerned with infinite sequences, including the space of
summable sequences; the interplay with finite sequences (which are manifestly summable)
provides a nice counterpoint.

Mobius mu as Inverse. Visual representations provide a very useful and convenient means
of thinking about the meaning of formulas. So, write D and D−1 bigger:

D =



1 1 1 1 1 1 1 1 1 1 · · ·
1 0 1 0 1 0 1 0 1

1 0 0 1 0 0 1 0
1 0 0 0 1 0 0

1 0 0 0 0 1
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

. . .


and

D−1 =



1 −1 −1 0 −1 1 −1 0 0 1 · · ·
1 0 −1 0 −1 0 0 0 −1

1 0 0 −1 0 0 −1 0
1 0 0 0 −1 0 0

1 0 0 0 0 −1
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

. . .


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The matrix entries of D−1 are given by the Mobius µ function

[
D−1]

nk =

{
µ
( k

n

)
if n divides k

0 otherwise

Just as before, each row is just the Mobius µ with zeros interspersed. (I’m getting a feeling
of deja vu, did I not write this same text ten years ago? Where is it? It dead-ended back
then...)

Note that D−1 is both a left and right inverse, because Dirichlet convolution is commu-
tative. That is, D−1D = DD−1 = I with I the identity matrix.

Just as the structure (∗,µ,ε,1) extracted from Dirichlet convolution provides a model of
the structure (+,−1,0,1) i.e. a model of arithmetic, so also the structure

(
·,D−1, I,D

)
also

provides a model of arithmetic. In what follows, there will be some tension and confusion
between these two models. The extension of relation < on the integers to a partial order
on infinite-dimensional operators is a bit less obvious.

Classical identities and fun facts. Clearly, all of the classical, well-known identities in-
volving Dirichlet series, Lambert series, and so on can be be re-written in slightly unrec-
ognizable form, using C and D instead of the classical notation. This includes all of the
identities that can be found in Apostol.[1] For reference and orientation, a few are given
here. The arrow→ is used to denote the interpretation of a classical formula.

The simplest “fun fact” is probably that the columns of D and rows of C sum to the
divisor function d (n):

d = 1∗1→ d (n) =
∞

∑
k=1

Cnk =
∞

∑
k=1

Dkn→ ~d =C~1 =~1>D

That is, the divisor function d (n) is a model for the integer 2. The vector notation just
emphasizes the linear-algebra aspect of the equations, so that ~d is the vector whose vector
components are dn = d (n). Simplifying further,

1 = 1∗ ε → 1 =
∞

∑
k=1

Cnkδk1 =Cn1→~1 =C~ε

and so the representation of 2 becomes more clear:

d = 1∗1∗ ε →~d =CC~ε =C2~ε

Divisor functions for general powers are obtained by defining the sequence

N (n) = n

and more generally
Nα (n) = nα

with N0 = 1. Then the divisor function

σα (n) = ∑
d|n

dα

becomes

σα = 1∗Nα → σα (n) =
∞

∑
k=1

Cnkkα =
∞

∑
k=1

kα Dkn→ ~σα =C ~Nα = ~Nα
>

D
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The Euler totient function ϕ is given by

ϕ = µ ∗N→ ϕ (n) =
∞

∑
k=1

kD−1
kn → ~ϕ = ~N>D−1

In what follows, most of the work will concern the operator D, and so all of these classical
identities are statements about left-vectors of D, as opposed to the more natural use of
right-vectors in linear algebra.

There is a deep and broad collection of further such relations; the Wikipedia article
“Redheffer matrix”[3] provides a good entry point.

Affine space. Although the structure (∗,µ,ε,1) provides a model of arithmetic, the same
structure can be based on any completely multiplicative function f . More precisely, the
arithmetic acts on such functions:

ε ∗ f = f
and so 1∗ f and 2∗ f and 3∗ f are also completely multiplicative functions, where a short-
hand is introduced: 2 = 1 ∗ 1 and 3 = 2 ∗ 1and so on. Similarly writing −1 = µ and
−2 = µ ∗µ and so on, and finally writing + for ∗, one has objects

· · · , −2+ f , −1+ f , f , f +1, f +2, · · ·
all of which are completely multiplicative. Effectively, completely multiplicative functions
form an affine space over these “integers”.

QUESTIONS

It is tempting to try to view operator matrix C as a raising operator of some sort: that is,
a shift. After all, it generates the integers, so this should be natural. This is not the case,
and can be seen in two ways. One way would be to note that raising and lowering operators
come in non-commuting pairs. In this case, the “lowering” operator C−1 commutes with C,
that is, C−1C−CC−1 = 0, and so the prize property of such operator pairs is lost. Another
way to see this is that raising operators have shift states (aka “coherent states”), given as
eigenvectors. But C has no (right-)eigenvectors. That is, there are no explicit vectors ~v
such that C~v = λ~v. In classical notation, there are no multiplicative functions f such that
1 ∗ f = λ f for some scalar λ . In operator language, C does not have a point spectrum.
It may still have a continuous or a residual spectrum; this question is explored below. So
although C carries one from one integer to the next, it is not a shift.

The matrix operator D. The transpose of C, the matrix D has one obvious eigenvector:
Dε = ε . There are not any others that are of finite length. Any triangular matrix has all
eigenvalues on the diagonal; for D they are all 1. Thus, D has a huge algebraic multiplicity;
we conclude it is not diagonalizable (for if it was, the eigenvalues would lie on the diagonal
– as they are all 1, it would be the identity matrix.)

Some obvious questions about D are:
• Can it be brought into something resembling Jordan normal form? The next sec-

tion shows that the answer is no, at least not in the naive sense: there are no Jordan
blocks. There are finite sequences of vectors that resemble Jordan chains: iterated
upon, they eventually terminate. The sequences correspond exactly to the factor-
ization of integers; each vector in the sequence corresponds to the removal of the
least prime factor. Unfortunately, these sequences are not uniquely determined;
nor can they be made orthogonal. They cannot be projected out, as they seem to
“mix”. Without a clear projection, there does not seem to be any clean or elegant
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way of writing classes of these sequences (or classes of subspaces spanned by the
vectors). Thus, there are no simple or immediately insightful results that instantly
appear.

• Perhaps it makes more sense to ask about the Frobenius normal form? A curious
idea, but also one that depends on producing a chain of vectors, which does not
seem possible.

One can also pose questions from classical operator theory. If the matrix D is treated as an
operator, acting on some kind of vector space (choosing Banach `1 space seems natural),
what is it’s spectrum? The answer here is much simpler to arrive at: D has an immense
point spectrum, the set of all completely multiplicative arithmetic functions (that are `1-
summable). The spectrum is continuous (not surprising, as it was not diagonalizable), and
the operator D itself is not a bounded operator (on the space of `1-summable sequences).

JORDAN DECOMPOSITION

To find the Jordan decomposition, we look for the generalized eigenvectors. The first
one is already Dε = ε . It’s useful to define ε1 = ε . The second one must be (D−λ I)ε2 = ε1
with λ = 1 and I the identity matrix. These are easier to visually read off if we write

D− I =



0 1 1 1 1 1 1 1 1 1 · · ·
0 1 1 1 1

0 1 1
0 1

0 1
0

0
0

0
0

. . .


Thus, ε2 = (a,1,0, · · ·) fills the bill, for any a. It spans a one-dimensional affine space. In
the following, ε2 will be called a ’generalized eigenvector’ even though any vector from
the affine space will do; the generalized vectors are actually classes of vectors.

The next obvious one is ε3 = (b,c,1− c,0, · · ·) for any b and c. Clearly (D− I)ε3 = ε1.
So ε2 and ε3 are necessarily in distinct Jordan chains. Next comes ε4 =(d,e,a− e−1,1,0, · · ·)
which obeys (D− I)ε4 = ε2, so its part of an existing Jordan chain. This was written so
that the a in ε4 is the same a as in ε2. It spans a two-dimensional affine space (i.e. holding
a constant). Then what?

Clearly, for any prime number p one has εp = (a,0, · · · ,0,1,0, · · ·) starts a new chain:
(D− I)εp = ε1. The next interesting composite is 6 = 1 ·2 ·3. So

ε6 = (a,b,c,−1,−c,1,0, · · ·)

must necessarily join the chain of it’s greatest divisor: (D− I)ε6 = ε3. There is no other
way: so εn is necessarily a vector of length n, with a 1 in the last position. As this multiplies
through, this 1 in the last position will necessarily hit the row with the greatest divisor in
it, and this row will necessarily have only one non-zero entry in it. The greatest divisor of
n is n/d where d is the least prime factor of n. Repeating this process walks through each
of the prime factors of n, with multiplicity. Thus, we have proven:
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Lemma. The length of the Jordan chain of εn is given by the number of prime factors
Ω(n), so that

(D− I)Ω(n)
εn = ε1

Writing the factorization of n as

n = pa1
1 pa2

2 · · · p
ak
k

with pi < p j when i < j, the corresponding Jordan chain is given by the sequence

pa1
1 pa2

2 · · · p
ak
k

pa1−1
1 pa2

2 · · · p
ak
k

pa1−2
1 pa2

2 · · · p
ak
k

...
pa2

2 · · · p
ak
k

pa2−1
2 · · · pak

k
pa2−2

2 · · · pak
k

...
pk

which repeatedly peels off the least prime factor of n.
How can one characterize the affine spaces indicated by these εn? One can proceed

constructively. Let en be the standard-notation basis vector: i.e. all zero’s except for a 1 in
the n’th location. The first vector is ε1 = e1, which spans a one-dimensional space. Other
representative elements of the affine space can be decomposed as

εn =
n

∑
k=1

ankek

with various constraints applied to the ank to be discovered.
Proceeding as before, ε2 = (a,1,0, · · ·) = aε1 + e2 and since (D− I)ε1 = 0 one may as

well take ε2 to be orthogonal to ε1, and normalized, so that ε2 = e2. The second affine
space is generated by ε2 and spanned by ε1.

Next is ε3 = (b,c,1− c,0, · · ·). Asking for orthogonality to ε1 sets b = 0. At this
point, it seems reasonable to ask that ε3 be orthogonal to ε2, so as to avoid mixing of these
subspaces. This constrains c= 0 so that the third space is generated by ε3 = e3 and spanned
by ε1.

As before, one may write ε4 = (c,d,a−d−1,1,0, · · ·) and asking that this be orthog-
onal to ε1 and ε2 implies that c = d = 0 so that ε4 = (0,0,a−1,1,0, · · ·). Insisting on the
Jordan chain condition (D− I)ε4 = ε2 implies that a = 0, so that ε4 = (0,0,−1,1,0, · · ·).
This means that ε4 is not orthogonal to ε3. At this point, it seems that there is no reason to
ask for this; 3 is not a prime factor of 4. The corresponding affine space is spanned by the
Jordan chain ε1, ε2 and ε4.

Continuing as before, we had seen that ε6 = (a,b,c,−1,−c,1,0, · · ·) and asking for
orthogonality to the prime factors ε1, ε2 and ε3 means that a = b = c = 0 and so ε6 =
(0,0,0,−1,0,1,0, · · ·). The Jordan chain is ε1, ε3 and ε6. Next is ε8 =(0,0,0,0,0,−1,0,1, · · ·),
which is uniquely determined by (D− I)ε8 = ε4 and the demand that it be orthogonal to
the rest of it’s Jordan chain.

Next is ε9. This is not well-constrained by the previous pattern of constraints. The
vector ε9 = (0,a,0,0,b,0,−1−a−b,0,1, · · ·) satisfies (D− I)ε9 = ε3 and is orthogonal
to the rest of it’s Jordan chain (and to it’s own prime factors). It is not constrained in the
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2,5 and 7 positions, effectively because 2, 5 and 7 are all relatively prime to 9, and none
appear in the Jordan chain. To form a constraint, one can insist on orthogonality to two of
these, but one cannot insist on orthogonality to all three (unless one instead discards the
constraint that (D− I)ε9 = ε3.)

Next is ε10. Since it is relatively prime to both 3 and 7, one has that ε10 =(0,0,a,0,0,0,−1−a,0,0,1, · · ·).
Clearly, the strategy of constructing Jordan chains in this fashion – asking each element to
be orthogonal to the last – leaves them under-constrained. Asking for the chains to all be
orthogonal is an over-constraint.

I don’t see any particular way out. Since D has nothing but 1’s along the diagonal,
it would be absurd to envision an infinite-dimensional Jordan block. Despite this, one
might hope to still have some kind of pseudo-blocks, feeding into one-another based on
the factorization of each integer. How to make this explicit is unclear; its not obvious that
this dream of pseudo-locks is even possible.

SPECTRA

Let ~s = (sn) be the vector given by vector components sn = n−s. Let ~ζ = D~s, then the
vector components of ~ζ are ζk = k−sζ (s). This can be easily seen by inspecting the visual
form of the D matrix. The top row corresponds to k = 1 and clearly sums all terms. The
second row, for k = 2, sums only even terms, and so on.

This demonstrates that ~ζ is just a constant multiple of~s, the constant of proportionality
given by ζ (s). In formulas: ~ζ = D~s = ζ (s)~s. This is a diagonalization, and eigenvector-
eigenvalue equation. We’ve written down at least some of the spectrum of D.

A similar identity holds for any completely multiplicative sequence. That is, if f (mn) =
f (m) f (n) for all integers m,n then writing g = D f one has that

g(1) =
∞

∑
n=1

f (n) and g(k) = f (k)g(1)

which is obviously a formal series when the summation does not numerically converge.
This too has the form of an eigenvalue equation:

D f = g(1) f

and provides a spectrum whenever g(1) is actually summable and convergent.
Note that a completely multiplicative sequence is determined entirely by it’s values on

the prime numbers: that is, by the values f (p) for p prime. It would appear that we’ve
demonstrated a lemma:

Lemma 1. Let M be the space of completely multiplicative sequences. Let `1 be the Ba-
nach space of summable sequences. The the space M ∩ `1 lies within the eigenspace of
D.

I suspect the converse is true, so that M∩ `1 is exactly the eigenspace of D, but am too
lazy to pursue a proof right now.

Spectral Theory. The goal of this section is to describe the spectrum of D. It’s a slow
walk through the standard vocabulary and definitions of spectral decompositions, mostly
posing questions but leaving them unanswered.

Lets assume (for now) that D is a bounded operator on the Banach space `1. Actually,
it isn’t bounded, as shown in the next section. Reviewing common definitions for bounded
operators:
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• The set of numbers λ such that (D−λ I) : `1→ `1 is one-to-one and onto is called
the resolvent set, denoted by ρ (D). It seems that perhaps the resolvent is the
empty set in this case (or perhaps, per Picard theorem, contains a single point. Or
two.).

• The complement of the resolvent set is the spectrum, denoted as σ (D) =C\ρ (σ).

What kind of spectra are there?

• The point spectrum of D are all those values λ ∈ σ (D) for which D−λ I is not
one-to-one. That is, the kernel of D−λ I is non-trivial; i.e. there is a vector, other
than the zero vector, that is in the kernel of D−λ I.

• The continuous spectrum of D are all those values λ ∈ σ (D) for which D−λ I is
one-to-one but not onto, and the range of D−λ I is dense in `1. Examples include
the “almost-eigenvectors”, i.e. vector-sequences ~vn that converge to ever-smaller
(D−λ I)~vn → 0, while at the same time not converging themselves: |~vn| → ∞.
Such λ ’s belong to the continuous spectrum, not the point spectrum.

• The residual spectrum of D are all those values λ ∈ σ (D) for which D− λ I is
one-to-one but not onto, and the range of D−λ I is not dense in `1.

It would appear that D−λ I has a point spectrum that is pretty much the entire complex
plane. This is because ζ (s) has a pole at s = 1 and so as s→ 1 it follows that λ →
∞. Whether or not the point spectrum really is the entire complex plane or not requires
answering the question: does ζ (s) attain every possible complex value, or not? (I do not
know).

Another way of saying is: the spectral radius of D is infinite (unbounded) because ζ (s)
is unbounded as s→ 1 (and the sequence sequence sn = n−s is `1-summable as long as
ℜs > 1; that is ~s ∈ `1 whenever ℜs > 1). Does ζ (s) attain every possible complex value
in the domain ℜs > 1?

Note that just because the the point spectrum might be the entire complex plane, this
does not mean that the continuous and residual spectra are empty. These are distinct ques-
tions.

Operator norm. What’s the operator norm of D? The operator norm is defined as

limsup
~v

|D~v|
|~v|

but this is clearly unbounded: taking~v =~s, one instantly has

|D~s|
|~s|

=
|ζ (s)~s|
|~s|

= |ζ (s)|

which diverges as 1/s as s→ 1. A simple pole, as it were. It’s operator norm is divergent
in this vector-direction. From this we can only conclude that D is not a bounded operator.

Are there other problematic directions? It would appear that any Dirichlet character
will result in a Dirichlet L-function having a pole at s→ 1. As vector directions, they are
distinct. As there are a countable infinity of characters, it would appear that D is unbounded
in a countable number of distinct directions (as characters are linearly independent of one-
another).

Are there other directions? Let’s try our luck. Consider the vector~q=
(
1,q,q2, · · ·

)
then

|~q| = 1/(1−q). For the following exercise, it’s pointless to imagine that q is a complex
number; so instead, take 0 ≤ q < 1 real. The norm of the divisor operator applied to this
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vector is

|D~q|=
∞

∑
n=1

qn−1

1−qn

which is a Lambert series. Since
1

1−qn ≤
1

1−q

one can write

|D~q|
|~q|

=(1−q)
∞

∑
n=1

qn−1

1−qn

≤
∞

∑
n=1

qn−1

=
1

1−q

which is useless as a bound; it is no bound at all. Can we do better? It would seem that the
asymptotic expansion q→ 1 for the Lambert series is

∞

∑
n=1

qn−1

1−qn =
− log(1−q)

1−q
+

γ

1−q
− 1

2
log(1−q)+O (1−q)

which implies that

|D~q|
|~q|

=(1−q)
∞

∑
n=1

qn−1

1−qn

=− log(1−q)+O (1)

as q→ 1. So this is a distinct direction in which D is not bounded.
The asymptotic expansion closely resembles Stirling’s approximation, but presence of

the Euler–Mascheroni constant γ suggests that that the derivative of the gamma function,
i.e. the digamma, appears in the derivation.

A speculative question presents itself, at this junction: is it possible to decompose D
into two parts, a bounded part, and an unbounded part? That is, is there any way possible
to write

D = Dbounded⊕Ddivergent

If so, are the two parts uniquely determined? What might they be?
Why even pose such a crazy question? Easy: the eigen-equation ~ζ = D~s = ζ (s)~s given

earlier is meaningful only when ℜs > 1, and is otherwise blocked by a pole in ζ (s) at
s = 1. Now, of course,ζ (s) can be analytically continued to the rest of the complex plane.
Can one do something analogous for D~s? How would that work?

Lambert basis. For example: define ~q as a kind-of principle vector/direction, and then
build an orthonormal basis around it. Perform a change-of-basis, i.e. apply the similarity
transform; what does D look like then? Lets try this.

Define a sequence of vectors~qn of the form

~qn =

(
1,1− 1

n
,

(
1− 1

n

)2

, · · ·

)
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The length of each vector is

|~qn|=
∞

∑
k=0

(
1− 1

n

)k

= n

It’s convenient to normalize to unit length: q̂n =~qn/n so that |q̂n|= 1. With this normaliza-
tion, its clear that q̂n→ 0 strongly, and not weakly, because each individual component in
q̂n is going to zero. (TODO review formal definitions of strong/weak convergence; I might
be mis-using the terms).

From the previous section,

|Dq̂n|= logn+O (1)

The q̂n are not mutually orthogonal; can we build some orthogonal basis that is weakly/strongly
orthogonal to the limit q̂n → 0 in some way? (Last time, when I tried to expand ~s in an
orthonormal basis, I ended up with the topologists sine. Is this why that happened?)

Dirichlet characters. The Dirichlet characters mod k are completely multiplicative. There-
fore, they too are eigenvectors. Given the character χ , define the vector ~χ = χ (n)n−s. The
eigen-equation is

D~χ = L(s,χ)~χ

with L(s,χ) the usual Dirichlet L−series

L(s,χ) =
∞

∑
n=1

χ (n)
ns

Just like ~ζ , the character vectors ~χ ∈ `1 whenever 1 < ℜs (since χ (n) is always a root of
unity or zero). Unlike ζ (s), which has no zeros for 1 < ℜs , the Dirichlet L−series have
zeros in the strip 1 < ℜs < 1+ ε . (Right? Am I imagining this? WTF? I forget...) This
implies that D has a non-trivial kernel. (ummm.... that can’t be right, can it?)

An earlier section wrote down the matrix for D−1, which seems to be “obviously” the
inverse, by inspection. Since D has a kernel in `1, one concludes that D−1 must be un-
bounded on `1. I presume (without checking) that

1
L(s,χ)

=
∞

∑
n=1

(µ ∗χ)(n)
ns

where (µ ∗χ) is the Dirichlet convolution. (double check that the above is correct, I think
it is; its a classical number-theory identity.). So while D had a divergence for the Lambert-
series vector, it seems that D−1 has much stronger divergences at the XXX zeros. Hang on
wtf. Where are the zeros of the L-series, again? This can’t all be right.

RIGHT INVERSES

It seems possible to construct an an uncountably(!) infinite number of right inverses to
the matrix operator D.

Pick some constant λ ∈ C and consider the set of ordered pairs (χ,s) that satisfy the
constraint that L(s,χ) = λ and that 1 < ℜs . For the general case, I believe that this set is
(countably) infinite. That is, there are a countably infinite number of Dirichlet characters
χ , and that, for almost all of them, it is possible to find one (or more) s = sλ such that
L(sλ ,χ) = λ . It seems that this should resemble problems in algebraic geometry, so that
such a λ and the corresponding points sλ are points “in general position”. (I don’t know
any particular ways of proving either of these statements, or of finding such points; but
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it seems intuitively obvious that this is the case. See, for example, “Bohr’s equivalence
theorem”, section 8.11 of Apostol[2].)

Each element of this set corresponds to a ~χλ = χ (n)n−sλ , which, by construction, is an
eigenvector of D with eigenvalue λ :

D~χλ = λ~χλ

It is an eigenvalue because the summation is absolutely convergent, if only because we’ve
been careful to discard those sλ corresponding to conditional convergence. That is, it seems
reasonable to insist on having ∑n |n−sλ |< ∞ so that there is no ambiguity as to the validity
of the linear matrix operator eigenvalue equation.

Thus, it seems one has a countably infinite set {~χλ}. Construct the matrix operator X
from the column vectors of {~χλ}. Consider now the product Λ = DX . It would appear that
this is a multiple of the identity matrix, in that

Λ~ek = λ~ek

where the ~ek are the usual unit basis vectors: ~ek = (0, · · · ,0,1,0, · · ·) with components
~ek (n) = δkn. In an earlier section, the matrix operator D−1 was constructed out of the
Mobius µ as both the left and right inverse. Here, it would seem that X/λ is a right inverse
(it cannot be a left inverse, obviously), and, it would seem that there are an uncountable
infinity of such inverses!

SERIES SHIFTS

Interesting problems arise if one considers composing D with the left-shift and right-
shift operators S and ST , where the left shift is defined as [S f ] (n) = f (n+1) for any
arithmetic function f (n). Also intriguing are the ladder operators for the simple harmonic
oscillator, A and AT defined by [A f ] (n) =

√
n+1 f (n+1), or, in more conventional nota-

tion, A |n〉 =
√

n |n−1〉 with A |0〉 = 0. The natural questions arising are then to describe
the product DS, and related constructions, such as the commutator AT D−DA or similar
oddities, such as the Laplacian-like 2D−

(
AT D+DA

)
.

Numerical exploration suggests ... eigenvalues are stable functions of matrix dimen-
sions. Some are near the real axis, some are near the imaginary axis. The eigenvalues
seem bounded. (Not increasing as function of matrix size). So far, nothing hops out and
says “look at me”.

NUMEROLOGY

Identities worth not forgetting. The digamma:

ψ (z+1) =−γ−
∞

∑
k=1

ζ (k+1)(−z)k

CONCLUSION

None yet. This is yet another patented sprawl of randomized ideas masquerading as
an essay. This essay may or may not be expanded and revised at some future date. (My
humble apologies: mostly, it would appear that I am woefully unacquainted with the tools
of operator theory, as surely there must be well-known theorems and techniques that can
be applied to the present situation.)
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