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ABSTRACT. A notable example of a discontinuous-everywhere function that is not tra-
ditionally integrable, yet, when properly defined, can be integrated, is derivative of the
Minkowski Question Mark function. Some subject matter overlaps that of [6]. This paper
includes numerical results for the Fourier transform of the measure, its Mellin transform,
and Poisson kernel.

This document is a research diary noting various results, and is haphazardly structured.
This note is a part of a set of papers that explore the relationship between the real

numbers, the Cantor set, the dyadic monoid (a sub-monoid of the modular group SL(2,Z)),
and fractals.

1. INTRO

THIS IS A CLIP-BOOK or DIARY of PARTIALLY-EXPLORED RESULTS. The intro
hasn’t been written yet, but if it was, it would work like this:

2. DISTRIBUTION OF THE RATIONAL NUMBERS IN THE FAREY TREE

One way to enumerate all of the rationals is by placing them on the Farey tree (or the
Stern-Brocot tree). It can be shown that the Farey tree enumerates all of the rationals in
the unit interval exactly once [2]. However, the distribution of the rationals on the Farey
tree is highly non-uniform, if the tree is walked breadth-first. The figure 2.1 shows that
distribution. This distribution is highly non-uniform, and by fooling with the number of
bins in the histogram, it becomes clear that the figure is highly discontinuous. As the
number of bins is increased, it becomes clear that the distribution has a peculiar structure:
it always has a humped form, even though the individual spikes vary strongly according to
the number of bins.

The shape is suggestive, and the numerical evidence makes it clear that it is somehow
the “derivative” of the Minkowski question mark function ?′(x) = d?(x)/dx. Performing
a simple numeric integral of the above, and comparing it to the exact expression shows a
perfect match, as witnessed in the figure 2.2.

A proof of the the equivalence of the distribution of the Farey numbers and the derivative
of the Question Mark is given in [7].

The derivative of the Minkowski question mark function cannot be defined using the
classical analytic techniques. More precisely, classical analytic tools applied to the “natu-
ral” topology of open sets on the real number line are insufficient to construct and describe
the shape of this curve. This motivates the study of alternative topologies for the real
number line, which constitutes one of the research programs of this paper.

When one does attempt to use classical techniques applied to the classical topology,
the result is a number of preposterous-sounding statements, a sampling of which are given
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FIGURE 2.1. Distribution of Farey Fractions
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Distribution of Farey Numbers

This figure shows a histogram of the first M=65536 Farey fractions according to their
location on the unit interval. To create this figure, the unit interval is divided up into

N=600 bins, and the bin count cn for each bin n is incremented whenever a fraction p/q
falls within the bin: (n−1)/N ≤ p/q < n/N. At the end of binning, the count is

normalized by multiplying each bin count cn by N/M. The normalization ensures that the
histogram is of measure one on the unit interval: that ∑

N
n=0 cn = 1. In a certain sense, the

“shape” of this histogram is independent of the number of bins and number of fractions
counted, although on a highly detailed level, the graph clearly varies with the number of
bins N. In a proper formal treatment, we would need to show that the limit limM→∞ cn

exists and is finite, for all n and N.

below. The question mark is highly singular. It is infinitely differentiable at every ratio-
nal, and all derivatives vanish at every rational; yet the mapping is strictly monotonically
increasing. Just examining the graph visually suggests that the derivatives must be non-
zero “somewhere”, although how to define how to value these derivatives is utterly unclear.
Naively, they seem to be “infinite” at every irrational; but this fails to explain how to inte-
grate.

Clearly, the classical approach is sorely lacking and inapplicable; something different is
needed. Two possibilities arise: throw away traditional ideas of integration and differenti-
ation, and replace them with something new, something suitable for fractals, or keep these
tools, but throw away the “natural” topology on the real number line. The latter approach
seems to be far more promising. There are several possible alternative topologies. Most
immediately obvious is the topology of the Cantor set, which is readily mapped to the real
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FIGURE 2.2. Sum of Farey Histogram

This figure shows the sum of the bin counts of the Farey fractions, together with a graph
of the Minkowski question mark function. The two graphs can hardly be told apart.

number line. Less obvious, but more appropriate, is the topology of “cylinder sets” that is
the natural topology for studying shifts, symbolic dynamics, and one-dimensional lattice
models. A certain limiting case of the Cantor set topology coincides with the language of
cylinder sets; this appears to be adequate for constructing measures which can capture the
general structure of this distribution.

The figure 2.3 shows what could be called the Jacobian (?′◦?−1)(x) of the question mark
function. This figure simple relabels the x-axis by passing it through ?(x). This function
appears to vanish only at the dyadics. Note the superficial resemblance of the profile to
the Takagi curve. By visually comparing this function and the Takagi curve (also called
the blancmange curve), one can intuitively sense that there must be a more formal relation
between the two, as if the values of the one function could somehow be exponentiated to
give the other. The trick is to write down this relation.

This is really a very curious circumstance. The above graphs show only the distribution
of a finite number of points (they were, after all, computer generated). A finite set of points
on the real number line is zero; yet we are using it to induce a measure that can be used
for integration. How is this? The statistical properties of a finite sampling provide us with
information about the limit. Its as if we were working with an anti-Cantor-set construction:
we start with a dust, and average over intervals to discover analytic properties.

The remainder of this paper proceeds by first examining the Fourier transform of the
quantity (?′◦?−1)(x), followed by the presentation of a class of fractal curves which appear
to capture the structure of (?′◦?−1)(x). This is followed by a discussion of how these
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FIGURE 2.3. Jacobian

This figure shows the same Farey fraction distribution as in a previous figure, except that
the x-axis is relabeled by passing it through the Minkowski question mark. In a certain

sense, this can be taken to be the Jacobian (?′◦?−1)(x) of the question mark.

This figures shows the integral
∫ x

0 (?′◦?−1)(y)dy, and, by comparison, the value of ?−1(x)
which it resembles.
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FIGURE 2.4. Takagi Curve

A graph of the Takagi-Landsberg curve tw(x) as a function of x for a fixed value of
w = 0.618. Note the curious visual resemblance to the Jacobian of the Question Mark

function. The Takagi curve, explored in [5], is given by

(2.1) tw(x) =
∞

∑
k=0

wk
τ

(
2kx
)

where τ(x) is the triangle function:

(2.2) τ(x) =
{

2(x−bxc) for 0≤ x−bxc< 1/2
2−2(x−bxc) for 1 > x−bxc ≥ 1/2

The fractal self-symilarity of the Takagi curve is given by a three-dimensional
representation of a certain monoid, the “dyadic monoid”.

curves can be viewed either as a measure on a Cantor set, or, equivalently, as statistical
lattice model.

2.1. Notes. Some slightly formal but not very fruitful remarks follow. To prove that the
measure vanishes on rationals, one must show two things: first, that the measure vanishes
near 0 (or 1), in that the the bin count for bin c0 (and c1 and a few neighbors) is always
bounded above by N−α for some α > 1. In fact, α is probably quite large, and the bound
can be made very strong. Next, one needs to show a modular group symmetry for the
histogram: thus for example, that cpN/q obeys a similar bound, but de-rated by a factor
given by the modular group element that carries 0/1 to p/q.
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FIGURE 3.1. Fourier of Jacobian
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Discrete Fourier Transform of Jacobian

This figure shows the values of the discrete Fourier transform coefficients

bn =
∫ 1

0
exp(2πin?(u))du

as a function of n. These were computed by numerical integration, by dividing the unit
interval into 60,000 uniform-width bins. The principle peaks occur at powers of 2, that is,
at 16,32,64,128,256, and so on. Lesser peaks clearly subdivide the intervals between these

peaks.

3. JACOBIAN AND ITS FOURIER TRANSFORM

Consider the integral

bn =
∫ 1

0
exp(2πinx)

dx
?′ (?−1 (x))

Because the denominator is discontinuous everywhere, the above is not well-defined with-
out additional work. Noting the denominator is in the form of a Jacobian, naively perform-
ing the change of variable u =?−1(x) leads to

(3.1) bn =
∫ 1

0
exp(2πin?(u))du

This last expression is easily evaluated by numerical means. By symmetry of the question-
mark function, the coefficients are purely real. A graph of these coefficients are shown in
figure 3.1. A fractal self-similarity is clearly evident.
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Numerical access to these coefficients begs a question: what would the inverse trans-
form look like? Formally, the inverse is given by

1
?′ (?−1 (x))

=
∞

∑
n=−∞

bne−2πinx

= b0 +2
∞

∑
n=1

bn cos(2πnx)

This function is, again, easily accessibly by numerical means; it is shown in figure 3.2.
The structure shown in the figure is highly suggestive: it appears to be an arrangement of
Dirac delta functions of varying strengths, located at the dyadic rationals. The structure is
not entirely straight-forward, but a hypothesis for this distribution is presented in the next
section.

By differentiating the identity x =?
(
?−1 (x)

)
one obtains the simple identity

(3.2)
(
?−1 (x)

)′
=

1
?′ (?−1 (x))

and so the figure 3.2 can be thought of as illustrating the derivative of ?−1 (x). The figure
confirms the intuition of what this derivative should look like: the derivative becomes
infinite (Dirac delta-function spikes) at the dyadic rationals. This figure could be prepared
directly, without the intervening Fourier transform: one could simply bin-count uniformly-
generated values of x, passing them through ?−1 (x) and thence into bins. Numerically,
bin-counting in this direct fashion is both easier and less prone to noise from rounding
and cutoff effects. The result of direct counting confirms the accuracy of 3.2, as well as
suggesting another curious detail. On close examination of this figure, it appears that there
are small areas of non-vanishing support at the dyadics. These are largest, and thus most
clearly visible, under the peaks at 0 and 1, and again, but smaller, at 1/2. Whether these are
numerical artifacts, or are real condensation points is hard to say. These are magnified and
shown in figure 3.3. The overt structure of figure 3.2 suggests that this function consists
solely of Dirac delta functions located at the dyadic rationals. The magnified figure 3.3
suggests that the function d?−1 (x)/dx might take on non-zero values at the other rationals,
or even at the irrationals – this is what is meant by “real condensation points”. Without
a formal, “analytic” expression for d?−1 (x)/dx, it is impossible to decide whether this
feature is “real” or an artifact.

The idea that these might be real condensation points is gugested by the fact that in each
sequence of delta functions, the magnitude of the delta function does not decrease to zero
at the limiting point of the sequence, but remains non-zero. Each dyadic rational is the
limit point of many such sequences.

Proceeding in a similar manner, one can obtain

cn =
∫ 1

0
exp(2πinx)?′

(
?−1 (x)

)
dx

by performing a change of variable:

cn =
∫ 1

0
exp(2πin?(u))

[
?′ (u)

]2 du

and then evaluating the above by means of bin-counting, the point being that it is straight-
forward to bin-count ?′ (u), whereas there are grave numerical difficulties with numerically
arranging bin-counts of ?′

(
?−1 (x)

)
. The results of such counting are shown in figure 3.4.
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FIGURE 3.2. The Jacobian by Inverse Discrete Transform
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The Jacobian of teh Question Mark Function

The above figure shows the value of the Jacobian, computed numerically, by means of the
equation

1
?′ (?−1 (x))

= b0 +2
∞

∑
n=1

bn cos(2πnx)

Clearly, one has b0 = 1,and so the figure actually shows
1

?′ (?−1 (x))
−1

in order to emphasize that the distribution is about zero. The principle peaks are at inverse
powers of two, namely, at

1
2
,

1
4
,

1
8
,

1
16

, · · ·

Although the principle peaks decrease in size, they do not do so linearly. Nor is the size
distribution regular, in the sense that the peaks at 3/8 and 5/8 are significantly smaller than
those at 1/8 and 7/8. A hypothesis for the actual size distribution is discussed in the text.

By contrast, the Fourier coefficients of just plain ?′ (x) do not exhibit any such regular
pattern, and instead give the general appearance of noise. These are shown in figure 3.5.
Similar remarks apply to the case of 1/?′ (x). The conclusion to be drawn here is that by
failing to employ the inverse ?−1 (x) together with the derivative, the structure if random-
ized out during the averaging process imposed by the Fourier transform. Put another way,
by failing to employ ?−1 (x), one is effectively taking the averages “in the wrong space”;
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FIGURE 3.3. Closeup of Derivative
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This figure provides a closup view of the graph near the origin, of the function shown in
figure 3.2. However, rather than obtaining this figure by Fourier-transform, it was instead

obtained by direct bin-counting. That is, a sequence of 256 million pseudo-random
numbers were generated, lying between 0 and 1. Then ?(x) was computed for these

numbers, and the result was added into one of 4097 bins. The bin counts ae then graphed
directly. Note that the graph fails to touch down at the x-axis, but rather has rounded

corners.

by using the ?−1 (x), one pulls the map back into the space over which the distribution is
taking place. This is why there is a very clean structure in figures 3.1 and 3.4, while the
structure of 3.5 is essentially that of noise.

Unfortunately, the structure seen in figures 3.1 and 3.4, while being very suggestive,
does not yet allow any simple guess as to what that structure is, exactly. In particular,
charting the heights of the peaks shows that the heights are not linear or geometric or
logarithmic in size. In particular, as a sequence of peaks approaches a cluster point, the
height of the peaks do not appear to decrease to zero, but rather to a finite value; the nature
of that value is unclear.

4. MELLIN TRANSFORM

Of some curiosity is the analytic structure of the Mellin transform of the Minkowski
derivative and measure. Figure 4 illustrates the quantity∫ 1

0
xs?′ (x)dx
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FIGURE 3.4. DFT of Inverse Jacobian
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Discrete Fourier Transform of Inverse Jacobian

This figure shows the coefficients

cn =
∫ 1

0
exp(2πin?(u))

[
?′ (u)

]2 du

for the range 1≤ n≤ 2500 obtained by bin-counting the first 32 million Farey fractions
into 4.6 million bins. The “noise” in the figure is best eliminated by moving to an

ever-greater number of bins. Visible are sharp spikes, of equal height, that occur at n = 2m

for integer m. Also clearly visible is a sawtooth of spikes that “chirp” as they approach the
primary spikes. There also appears to be additional structure, although it is difficult of

make out visually at this scale.

for general complex-valued s, whil 4 shows∫ 1

0
xs?′

(
?−1 (x)

)
dx

It is of some curiosity to note that the analytic structure exhibits no obvious crazy fractal
patern; it seems to be well-mannered overall, and appears to be “just another holomorphic
function”. This would seem to indicate that the inverse Mellin transform of “plain-old”
holomorphic functions can be quite astonishing, in general.

5. POISSON KERNEL

The Poisson kernel commonly occurs in the study of Hardy spaces, and occurs there
in several contexts. The most notable is in a theorem of F. Reisz, the decomposition of
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FIGURE 3.5. DFT of the Derivative
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DFT of the Derivative of the Question Mark

This figure shows the Fourier coefficients given by

dn =
∫ 1

0
exp(2πinx)?′ (x) dx

obtained for 0≤ n≤ 600 by bin-counting the first 16 million Farey fractions into 1.6
million bins. Unlike the previous figures, this shows no obvious fractal or self-similar

structure.

bounded holomorphic functions into inner, outer, and singular functions. Given the sin-
gular nature of the Question Mark, the question of its extension to the complex plane is
interesting.

Given a singular measure dµ , the Possion kernel yeilds a holomorphic extension:

g(z) =
∫ 1

0

ei2πt − z
ei2πt + z

dµ(t)

Here, t is understood to be real, so that dµ(t) is a measure on the unit interval; whereas z
is any value on the complex plane (although it is typically taken to be inside the unit disk.

For the case of the Question Mark, by taking

dµ(t) =
(
?′◦?−1)(t)dt

a numerical exploration suggests that

g(z) =

{
+1 for |z|< 1
−1 for |z|> 1
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FIGURE 4.1. Mellin transform of the Minkowski derivative

This figure illustrates the Mellin transform for the Minkowski derivative. That is, it shows
the phase of the integral∫ 1

0
xs?′ (x)dx

for general, complex-valued s. Specifically, it shows the region −15≤ℜs≤ 15 and
0≤ ℑs≤ 40. The phase runs from 0 to 2π , of course, and the coloration is such that black
represents a phase of 0, red a phase of 2π , and the other colors interpolating in between,

with yellow being approximately a phase of π . Simple poles are clearly seen at the
terminus of the “fingers”, (where the phase wraps around completely).
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FIGURE 4.2. Mellin Measure

This figure illustrates the Mellin transform for the Minkowski measure. That is, it shows
the phase of the integral∫ 1

0
xs?′

(
?−1 (x)

)
dx

for general, complex-valued s. Specifically, it shows the region 0≤ℜs≤ 160 and
0≤ ℑs≤ 160. The coloration is the same as in figure 4. As before, simple poles are

clearly seen at the terminus of the “fingers”, (where the phase wraps around completely).

However, as a numerical result, this is very weak. Almost any non-negative distribution on
the unit circle will evaluate numerically to a very similar result.

6. DELTA-FUNCTION DISTRIBUTIONS

The distribution for equation 3.2 shown in figure 3.2 is suggestive and open to hy-
pothesizing. This section develops a family of distributions exhibiting the same general
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properties as this figure; they are composed of sequences of Dirac delta functions. It is
hyypothesized that one member of this family is exactly the desired distribution.

Consider first the “main sequence” of delta fuctions, which seem to be of the form

δ (x−1)+
1
2

δ

(
x− 1

2

)
+

1
4

δ

(
x− 1

4

)
+ . . .

A close examination of the numerical data shows that the main sequence of peaks is not
this simple; in particular, it does not have this geometric progression of sizes. However,
the above sequence also doesn’t have the full fractal self-similarity; perhaps linear com-
binations of the above can lead to the desired shape. Towards this end, define a “main
sequence” funtion as

hw (x) =
∞

∑
n=0

wn
δ

(
1− 1

2n

)
Here, w is to be a parameter; its expected that w < 1. A symmetrized version of this
function is

jw (x) = hw (x)+hw (1− x)

A fully self-similar arrangement of delta functions can then be arranged by the same con-
struction as that of the Takagi function; furthermore, this construction can be proven to
have exactly the same set of self-symmetries and self-similarity transformation properties
as the question mark itself [5]. The construction proceeds by defining

j̃w (x) = jw (x−bxc)

where bxc is the floor of x. The self similar fractal is then given by

kvw (x) =
∞

∑
k=0

vk j̃w
(

2kx
)

where v is another, independently adjustable parameter. A numerical exploration of this
function suggests that the actual distribution might be near to v = 0.42 and w = 1.0, that
is, the hypothesis is that

d?−1 (x)
dx

∼ k0.42,1(x)

The meaning of the value of 0.42 is unclear. A graph of this distribution does hint slightly
at the rounding effect shown in figure 3.3, but is not anywhere near as pronounced.

7. A FAMILY OF CANTOR-SET DISTRIBUTIONS

The family of delta-function distributions suggests how to construct a notion of thier
reciprocal. The reciprocal should be zero where-ever there is a delta function, and have
a non-zero measure wherever the delta-function distribution was zero; in this case, at the
irrationals. Such a measure can be explicitly constructed; the construction can be laid on
solid foundations, as a measure on the Cantor set. Before formalizing, this measure is first
built by example.

The function

sw (x) =


wn for 1

2n+2 < x < 1
2n+1

0 for x = 1
2n

s(1− x) for 1
2 < x

has the shape of a stupa-like stepped pyramid, shown below for w = 1/2:
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This may be used to construct a Cantor-set measure, by defining

(7.1) µw (x) =
1
Z

∞

∏
k=0

s̃w

(
2kx
)

=
1
Z

exp
∞

∑
k=0

log s̃w

(
2kx
)

where the tilde-version of a function is defined as before,

s̃w (x) = sw (x−bxc)
The normalizing factor Z (which will be revealed to be the partition function) serves to
normalize the measure, so that

1 =
∫ 1

0
µw (x) dx

That eqn 7.1 deserves to be called a measure on a Cantor set will be explained in a later
section. First, note that the summatation is in the same form as the sumation that is used to
define the Takagi or blancmange curve. Taking this as a cue, the measure can be slightly
generalized by adding another parameter v:

(7.2) log µv,w (x) =
∞

∑
k=0

vk log s̃w

(
2kx
)
− logZ

This family of measures is numerically tractable, and a quick check suggests that the shape
depected in figure 2.3 belongs to this family. Numerical exploration suggests a hypothesis,
that the correct shape is not far from v = 0.73 and w = 0.78; that is, one has the approximate
numerical identity

?′
(
?−1 (x)

)
≈ µ0.73,0.78(x)

The true origin of these fractional values for v and w is unclear; in the present case, they
were arrived at by numerical means, by exploring the integral

Qv,w (x) =
∫ x

0
µv,w (?(y)) dy

so that the actuial numerical approximation is given by

(7.3) ?(x)≈ Q0.73,0.78 (x)

The self-similarity transformation properties of Q and µ can be explored by the same
techniques as those developed for the Takagi curve, in [5]. This is possible because the
construction of eqn 7.2 directly corresponds to that used for the Takagi curve.

8. CANTOR MEASURES

This section takes a brief moment to justify the label of “Cantor set measure” used in
the paragraphs above. It proceeds by the definition of the canonical Cantor set, then a class
of Cantor sets with non-zero measure, and finally, a class of generalized Cantor sets with
arbitrary measures.

The traditional Cantor set is constructed by considering first the closed unit interval,
and then removing the open set that is the middle third: by removing the set (1/3 , 2/3).
One then removes the middle thirds from the remaining two closed intervals, and then
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recursively proceeding ad infinitum. It was Cantor’s achievement to show that the remain-
ing set is uncountable [3]. This procedure can be performed multiplicatively; namely, by
considering the function

c(x) =


1 for 0≤ x≤ 1

3
0 for 1

3 < x < 2
3

1 for 2
3 ≤ x≤ 1

The indicator function for the Cantor set is then given as

(8.1) µC (x) =
∞

∏
k=0

c̃
(

3kx
)

with the tilde defined as before. This indicator function is equal to 1 for any point x belong-
ing to the Cantor set, and zero otherwise. A formal measure, defined in standard measure-
theoretic terms, can be defined for this function. In plainer language, it is integrable: one
finds that

0 =
∫ 1

0
µC (x)dx

that is, the measure of the Cantor set is zero. The principal difficulty of constructing the
formal measure is the realization that the standard open-interval topology for real interval
won’t do.

The indicator function above can be generalized in a variety of ways; the most important
generalization for the present purposes is to define a measure that is not vanishing on the
unit interval. This may be done by considering an indicator function of the form

cw (x) =


1 for 0≤ x≤ w
0 for w < x < 1−w
1 for 1−w≤ x≤ 1

indicating a pair of closed intervals of width w, which is then recursively compounded by
the middle-thirds construction. But geometrically increasing the widths, so as not to get
zero measure. – it must get “fat”, Etc.

But the above is not the most convenient form for this construction. Sigh. The rest of
this section needs to continue the expository review, culminating in the realization that eqn
7.1 really is a proper measure on a Cantor set.

9. INTRO TO REMAINDER

The remainder of this paper should be split off to be its own thing, as it no longer hangs
with the above.

Modular forms are analytic functions that are closely related to elliptic functions, and
have a particular kind of modular group symmetry. Modular forms are defined on the
upper-half plane H of the complex plane C, that is, for complex numbers τ = x + iy with
y > 0 [1]. Here, we are concerned with the limiting behavior of y→ 0, which yields
highly singular functions defined on the real number line, yet inheriting a modular group
symmetry of the form of which they are the limit.

Most fractals presented in the popular literature have a form that suggests that they live
on the closure of the hyperbolic plane: that is, they live on the “edge” of that plane. Of
course, the hyperbolic metric never allows you to get to that edge, but one can also put
an ordinary Euclidean metric on the Poincare disk, or the Poincare upper half plane, and
get to that boundary. The problem is, of course, that the topologies that seem to suggest
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themselves in these two cases are subtly incompatible, and lead to a variety of confusions.
In particular, we argue below that when considering the limiting behavior of of functions
at the “edge” of hyperbolic space, the correct topology is a kind of “binary tree topology”,
similar in form to the Cantor set, but a bit richer. In particular, this topology is finer than
the usual topology on the real number line, and this additional fineness allows otherwise
dubious expressions to be given precise meaning. It is only when functions on this topology
are mapped back onto the real number line that confusions result.

10. A BINARY TREE TOPOLOGY

Consider the “dyadic topology”: every rational of the form p/2n for p odd and integer
n > 0 is taken to be an open set. All points in between such dyadic rationals are taken to
form an open set.

One way to visualize this topology is as a binary tree. At the root of the tree is the point
1/2. At the next level, there is 1/4 and 3/4, and so on. Every such node in the tree is then
taken to be an open set. At the leafs of the tree lie the irrationals, and the rationals not of
the form p/2n.

The topology differs from that of the canonical Cantor set: in that case, the intermediate
nodes are not even considered to be a part of the topology. The leaf nodes are taken to be
closed sets, which is how the Cantor set becomes a perfect set.

The point of introducing this binary tree topology is .... Task: construct measures on
this topology.

Several remarks are in order. First, in the canonical Cantor set, each leaf was assigned
a measure of zero. It should be clear that this choice is arbitrary, and that any measure
can be assigned to the endpoints. The cardinality of the endpoints of the binary tree is the
cardinality of the continuum, as can be seen by using more or less the same arguments
used to discuss the cardinality of the Cantor set. Because of this, it is not unreasonable
to believe that one may be able to construct measures that “make sense” in the context of
the real number line. In particular, such measures can make well-defined integrals and the
like.

Of interest are measures that are functions of, and possibly holomorphic functions, of
the dyadic expansion. That is, consider the series {bk : bk ∈ {0,1}, k ∈ N}of binary digits
given by the dyadic expansion of a real number x:

(10.1) x =
∞

∑
k=1

bk

2k

This expansion is not unique, because for every dyadic number, there are two inequivalent
expansions. For example, 1/2 = 0.1000.. = 0.0111.... Therefore, we conclude that the
dyadic topology is finer than the the usual topology on the real numbers. In particular,
the dyadic topology distinguishes all three of these cases: 1/2 is a not in the middle of the
tree (the root as it happens here), whereas the two inequivalent expansions belong to two
different leafs at the end of the binary tree.

Because this topology is finer than the usual topology on the real number line, one
can define functions on this topology that would be ill-defined when considered on the real
number line: in particular, the three points above map to just one point on the real numbers.
However, it should be painfully clear at this point that this topology is compatible with the
discussion the structure of dyadic fractals. It should also be clear that this topology is
compatible with discussions of the closure of the upper half-plane when considering the
limiting behavior of modular forms, Fuchsian groups, and ergodic processes.
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As an example, consider the Takagi curve. When considered on the real-number line,
it has a derivative that seems to be defined nowhere. When considered on the binary tree
topology, its derivative looks a lot less intimidating: in fact, it is perfectly well-defined on
the leaves; the only ambiguity is on the interior nodes of the tree. Furthermore, the interior
nodes of the tree are a countable set, whereas the leaves are uncountable.

XXX Discuss “fat cantor set”, i.e. a measure which puts all of the measure on the leaves
of the tree.

This implies that the derivative of the Takagi curve is in fact defined “almost every-
where”, with the exception of only a countable set of points. The goal here is to bootstrap
this realization into providing a wholesome topological definition for all fractal measures.

Next, because the topology is that of a binary tree, it should be clear that any binary
structure inherits this topology in a natural way. In particular, the Stern-Brocot tree has
this topology. In particular, this means that there is a second natural mapping to the real
number line, given by the Minkowski Question Mark function. The interior nodes of the
tree are the rational numbers (a countable set), and the leaves of the tree are the irrationals
(of the cardinality of the continuum). By using the dyadic topology, the derivative of the
question mark function becomes a whole lot less intimidating as well: it becomes clear that
the derivative is precisely zero on the rationals (the interior nodes of the tree), and non-zero
on the leaves. Again, because of the cardinality of the leaves, it becomes clear that this
measure can be integrated in a well-founded way. The problem then is no longer “how can
the derivative of the question mark be put on a good foundation”, rather it becomes “what
sort of easy to manipulate, easy to handle expressions for this measure can be found?”.

XXXX ToDo: review standard topological notions for the binary tree topology in greater
detail, such as separation axioms, bases, metrics, continuity, differentiability. etc. Note that
finer topologies typically have fewer continuous, smooth functions than coarse topologies.
Since this is finer than the “natural” topology on the reals, who are the losers?

11. MODULAR FORMS

A meromorphic function f (τ) is said to be a modular form of weight k if it has the
modular group symmetry

(11.1) f
(

aτ +b
cτ +d

)
= (cτ +d)k f (τ)

for integers a, b, c and d such that ad− bc = 1. Here, τ is a complex number, restricted
to the upper-half plane: ℑτ > 0. Modular forms can also be expressed as a function of the
nome q = exp iπτ . In this form, many have the interesting property of having poles and
zeros closely interspersed at the limit of |q| → 1, with poles (or zeros) occurring at rational
angles, and the other at irrational angles. A particular example of this is the twenty-fourth
root of the modular discriminant, known as the Dedekind eta.

The figure 11.1 shows a particular cross-section through the Dedekind eta. Note the
suggestive shape of this curve, and how it crudely resembles the distribution of the Farey
fractions. Although it is clear that this curve will not converge to the derivative of the
question mark in the limit |q| → 1, it none-the-less is suggestive. Notably, modular forms
already have the modular group symmetry, and so already have the symmetry properties of
the final curve that we are searching for. This is unlike the histograming approach, where
the symmetry is obtained only in the limit. The other remarkable property is that modular
forms are infinitely differentiable, and thus posses well-behaved analytic properties, again
allowing a kind of study that is ill-afforded by the histograms.
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FIGURE 11.1. Dedekind Eta

This figure shows a particular slice through the Dedekind eta function
η = q1/24Π∞

n=1(1−q2n). This figure graphs |η | along a particular curve: we take
q = |q|eiθ and hold |q|= 0.96 fixed, while sweeping through values of θ from 0 to 2π .

Several features of this figure should be noted. First, this function is continuous and
infinitely differentiable for any value of |q|< 1. Next, the Dedekind eta has a kind of

modular group symmetry: if we write the nome q = exp(iπτ), then
|η((aτ +b)/(cτ +d))|= |

√
cτ +d η(τ)| for integers a, b, c, and d such that ad−bc = 1.

Finally, in the limit of |q| → 1, this function has a zero for all rational angles θ = πm/n
where m, n are integers, but otherwise this function diverges for all non-rational angles θ .

As such, it has a superficial resemblance to d?(x)/dx.

The presumption made here is that the derivative of the Minkowski question mark func-
tion will be found to be the limit of some modular form, although which modular form
that might be is not clear. The theory of modular forms is deep and broad, and will not be
reviewed here. A very synoptic overview can be found in the article on elliptic functions
in Wikipedia. There are many deep expositions on the topic [1] [4].

12. CONCLUSION

In conclusion, we conclude ??? We conclude that the ourier transform is very nearly
tractable. The sruprising result for the Poisson kernel is begging to be studied in greater
detail.
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FIGURE 11.2. Sigma angular cross section

This figure shows an angular cross section of a series build from the number-theoretic
divisor function. Specifically, it is a graph of∣∣∣∣∣ ∞

∑
n=1

σ2(n)rneinθ

∣∣∣∣∣
−1

for a fixed value of r=0.95 and θ running from 0 to 2π . Each tall spike represents a close
approach to a zero of the divisor series. Here, σ2(n) is an arithmetic series, specifically,

the multiplicative series

σa(n) = ∑
d|n

da

where the sum extends over the integer divisors of n.
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