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Abstract

An exploration of the interior or the Mandelbrot Set and the appearance of
functions appearing to be similar to modular forms. This provides yet another ex-
ample of the close interconnection between the structure ofthe Modular Group
SL(2,Z) and fractals. The relationship is demonstrated computationally and visu-
ally, and not from first principles; visually, the interior resembles the Weierstrass
elliptic invariant g2. However, it is a resemblance only; the various explicit ex-
pressions that can be found are shown to not actually be modular forms. It is
hypothesized that some simple but currently unknown transformation will convert
them into modular forms.

The construction of the interior is based on averaging together iterated values
with a spectral-type summation, and then analyzing the asymptotic behavior of the
sum. Leading divergence are easy to explain and remove; the remaining finite parts
hint at modular symmetry.

This is a work in progress. A final conclusion and analysis hasnot been
reached.

This paper is part of a set of chapters that explore the relationship between the
real numbers, the modular group, and fractals. Updated and revised versions of
this monograph can be found athttp://www.linas.org/math/sl2z.html

1 Dedekind Eta and the Mandelbrot Set

XXX This paper may be subject to occasional revision. XXX
Modular forms are a particular kind of function on the complex upper half-plane

studied in analytic number theory and the theory of ellipticcurves. A precise definition
of a modular form[?] will be given later in this paper. As a simple example, consider
the Euler function

φ(q) =
∞

∏
k=1

(1−qk) (1)

on the complex plane. It is closely related to the Dedekind eta function, which is
a modular form. Figure 1 showsφ(q) inside the unit disk|q| < 1. Graphs of most
modular forms visually resemble this picture in one way or another. The exploration
presented in this monograph will be mostly visual, not algebraic; none-the-less, various
basic expressions will be developed to make the hypothesis as explicit as possible.
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Figure 1: Euler Function

A rendition of the absolute value|φ(q)| of the Euler function on theq-disk. Note the
readily apparent fractal self-similarity. This type of self-similarity is explicitly associ-
ated with the properties of the modular groupPSL(2,Z). A crude general resemblance
to the structure of the Mandelbrot set should be equally evident. This paper is devoted
to making this vague resemblance into a relationship as concrete as possible.

2



Now consider the Mandelbrot set. By means of a sequence of figures below, we
shall uncover a structure inside the Mandelbrot set that appears to be some kind of
modular form. The general development will be as follows: the first section develops
a set of series that capture the asymptotic behavior of an iterated function. In the
next section, these series are then applied to the Mandelbrot set iterator, where they
are found to contain divergent and finite terms. The next section develops explicit,
exact expressions for the divergent terms. The remainder ofthe paper is devoted to an
exploration of the finite terms, and attempts to draw analogies to such modular forms
as the Weierstrass elliptic invariantg2 and to series involving the divisor function. Both
the main cardioid and the large western bulb are explored. The paper concludes with
an appendix reviewing the numeric techniques of series acceleration.

This paper is an expansion and revision of an earlier paper posted athttp://www.
linas.org/art-gallery/spectral/spectral.html.

1.1 Regulated Series

This section reviews the construction of a regulated series. These series will be used
to perform a kind of averaging over the values of an iterated function; the asymptotic
behavior of an iterated function may be studied in terms of these series.

Consider the sequence{a0,a1,a2, ...}. Then for small positivet, construct the sum

S(t) =
∞

∑
n=0

ane−tn (2)

In the following,we’ll refer to this as theregulated series for the sequence {an}. For
large class of reasonably behaved series{an}, this sum is finite for all positive values
of t. By ’reasonably behaved’ we mean a sequence wherean doesn’t get exponentially
large with increasingn; that is, one where the sum converges.

This sum participates in some interesting number-theoretic relationships when the
{an} are considered to be the spectrum of an operator. In the following, we will be
considering the{an} not as a spectrum, but instead as the iterates of the Mandelbrot
Set. Before doing so, lets quickly review some basic properties.

One can define a Dirichlet series

C(s) =
∞

∑
n=0

an

ns (3)

which can be easily converted into the first sum with an integral transform.
The spectral analysis consists of exploring the behavior ofthe sum in the limit of

t → 0. Depending on the series, it may diverge. For example, if wetake allan to be
one, the sumN(t) = ∑∞

n=0exp(−tn) diverges as 1/t, while∑∞
n=0 n exp(−tn) diverges as

1/t2. The corresponding Dirichlet series exhibit poles ats = 1 ands = 2, respectively,
for these sums. The core idea behind spectral analysis is that in general, one can gain
insight into the structure of the series{an}by understanding the analytic structure of the
related series. In other words, instead of studying{an} directly, we study the expansion

S(t) =
∞

∑
n=−N

sntn (4)
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instead.
When engaging in numerical calculations, the Dirichlet series is nearly numerically

intractable, because of its painfully slow convergence. Thus,one is instantly motivated
to use the exponential series instead. However, one gets an even more stable and nu-
merically well-behaved series by considering the Gaussianregulator, namely

∞

∑
n=0

an exp(−t2n2) (5)

There is no harm in using this series for numerical work; it can be related back to
the Dirichlet series through analytic integral transforms, albeit somewhat more com-
plex ones than the plain exponential series. This, and some numerical subtleties, are
discussed in a later section.

1.2 The Spectral Analysis of the Mandelbrot Set

Now consider the standard Mandelbrot set iteration

zn+1 = z2
n + c (6)

ant the regulated series for this sequence of points

Sc(t) =
∞

∑
n=0

zne−t2n2
(7)

where we’ve added the subscriptc to remind us that this series takes on distinct values
for every pointc ∈ C. For most of the interior of the Mandelbrot set, this sum diverges
as 1/t. To normalize this sum, let us define

N(t) =
∞

∑
n=0

e−t2n2
(8)

which also diverges as 1/t. Figure 2 shows the nature of the divergence by normalizing
against this value. As a practical matter when performing numerical computations, it
is more appropriate to letN(t) stand in the place of divergences, rather than to try to
use 1/t directly. The utility of this procedure is discussed in detail in a later section on
numerical methods.

The first order of business is to provide an explicit expression for the divergent term.
We can do this by considering a related and somewhat more interesting sum, the sum
over second derivatives ofzn with respect toc. Realizing that eachzn is parameterized
by c, we can take its derivative:

z′n+1 =
d
dc

zn+1 = 2z′nzn +1 (9)

and

z′′n+1 =
d2

dc2 zn+1 = 2
(

z′′nzn +
(

z′n
)2

)

(10)
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Figure 2: Divergent term

Plot of the divergent term ofSc(t). The figure shows limt−>0+ |Sc(t)|/N(t), where
|x + iy|=

√

x2 + y2 is the ordinary complex modulus. Black represents a value ofzero,
and green a value of 1/2. Points outside of the M-set are explicitly excluded from this
picture. An explicit expression for this divergent term is given in the text.
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Note thatzn, z′n andz′′n are well defined for all values ofc and finiten: they are entire
functions, ’merely’ polynomials inc. Note that these polynomials never involve ¯c, the
complex conjugate ofc, and thus all derivatives with respect to ¯c are vanishing.

Let us then define the sum

Pc(t) =
∞

∑
n=0

z′′n exp(−t2n2) (11)

Note that

Pc(t) =
d2

dc2 Sc(t) (12)

holds for all positivet. Pc(t) also diverges as 1/t. Figures 3 and 4 shows the magnitude
and phase of that divergence. By comparing the figures, it is relatively straightforward
to determine that inside of the main cardiod, the divergent term ofPc(t) is given by

Pc(t) = N(t)
1

4(1
4 − c)3/2

+O (1) (13)

The divergent term term ofPc(t) can be immediately integrated to obtain the diver-
gent term inSc(t) inside the cardiod:

Sc(t) = N(t)

[

1
2
−

√

1
4
− c

]

+O (1) (14)

If we write this divergent piece asA(c) = 1
2 −

√

1
4 − c then it is trivial to verify that

|A(c)| = 1/2 on the boundary of the cardioid; that is,
∣

∣A(eiφ/2− e2iφ/4)
∣

∣ = 1/2 for
all anglesφ. The boundary of the cardioid is given byx + iy = eiφ/2− e2iφ/4, of
course. Next, we note thatA(c) represents a fixed-point of the Mandelbrot iterator:
A(c) = A2(c) + c. Indeed, this should not be a surprise: the divergent term ofthe
sumSc(t) is in effect the average over over all values ofzn. Inside the main bulb, we
have limn→∞ zn = A(c), and so of necessity, the leading divergence of the sum must
be A(c). Similarly, in the large bud on the left,zn converges to a two-cycle, with
zn → −1/2+ i

√

c +3/4 andzn+1 → −1/2− i
√

c +3/4. The average of these two
values is−1/2, and so we can trivially deduce that limt→0+ Sc(t)/N(t) = −1/2 and
thus that limt→0+ |Sc(t)|/N(t) = 1/2 which exactly matches our numerical results. In
other buds, the sequence converges to m-cycles. Thus, in other buds, the divergent term
will be the average over these m values of the limit cycle. Provided one can calculate
this average, then one has an exact expression for the divergences ofSc(t). Of course,
there are considerable additional difficulties once one gets into the more contorted parts
of the M-set, since the convergence to a limit cycle can be extremely slow, thus creating
considerable topological difficulties when reasoning about the topology of the M-set
and in particular, the validity of the expansion of terms in the formula 4. The remainder
of this monograph concerns itself with the issue of the rate of convergence to the limit
cycles, which we will find is given by the Dedekind eta.
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Figure 3: Divergent Derivative

This picture shows the divergent term ofPc(t), that is, limt−>0+ |Pc(t)|/N(t). Red
denotes any value equal or greater than 1, black correspondsto a value of zero. The
value of this limit in the largest bud to the left is preciselyzero over the entire bud. For
the next smallest buds (at the top, bottom, and the second to the left), the value seems
to be uniformly 1/30 across the whole bud, although there does seem to be a slight
gradation which is hard to distinguish from numerical errors. By looking at this image,
we can see that this limit seems to take on other, constant, values in the progressively
smaller buds. The color scheme here has black <= 0.0, blue ~= 0.2, green ~= 0.5,
yellow ~= 0.75, red >= 1.0. If the values were indeed constantover the smaller buds,
this would have some interesting implications on the limit-cycles for these buds, as
discussed in the text.
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Figure 4: Divergent Phase

The phase of Pc(t) in the limit of t → 0. That is, it shows
limt→0+ arctan(ℑPc(t)/ℜPc(t)). The color scheme is such that black=−π, green=0,
red=+π. The rays on the outside of the set correspond to Duoady-Hubbard rays. Note
the first hint of a modular form-like structure in the largestbulb immediately to the left
of the main cardiod.
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1.3 Finite Terms

Let us now turn to the finite remainders. By subtracting away the divergent pieces,
we are essentially subtracting away the contribution of theasymptotic limit cycle. The
remaining finite parts indicate how the asymptotic behavioris approached. If the finite
part is large, this indicates that the iteration took a long time to approach the asymptotic
limit. If the finite part is small, then the series converged to its limit cycle quickly. The
figure 5 shows this rate of convergence. Curiously, we find that

lim
t→0+

|Sc(t)|−N(t) |A(c)|+ |Sc(t)−N(t)A(c)|. 0.01 (15)

that is, the divergence of the modulus has the opposite sign from the divergence of the
sum. This can only happen if the phase (the argument) of the finite part is opposite to
the phase ofA(c). In other words,

arg(Sc(t)−N(t)A(c))≈−argA(c) (16)

The overall structure at first doesn’t look all that inspiring. As before, we can
discern considerably more structure if we examinePc(t) instead ofSc(t). This reveals
some of the true complexity in the system.

The finite term in the main cardiod is shown in figure 6 and at least a superficial
resemblance to the image of the Dedekind zeta/Euler function shown in figure 1 should
be immediately apparent.

It is important at this point to note that this last figure shows the modulus taken
first, and then the divergence subtracted afterwards. This is not the same as subtracting
the divergence first, and then taking the modulus. If we subtract the divergent complex
term first, then we see in the main cardiod a figure that closelyresembles that in figure
7, with a complex structure of poles located on the boundary,and zeros located inside.

1.4 The Circular Western Bud

The sums on the main circular bud immediately to the west of the cardioid do not have
a divergent parts; the sums appear to be finite. The bud interior is shown in the figure
7.

The bud interior shows a remarkable visual resemblance to the divisor series

so(q) =
∞

∑
n=1

d(n)qn =
∞

∑
n=1

qn

1−qn (17)

constructed from the classic number-theoretic divisor functiond(n) = σ0(n), the num-
ber of divisors ofn. Figure 8 shows the divisor series.

Re-expressing the coordinates on the interior of the bud as

q = 4(c +1.0) (18)

so that the center of the bud occurs atq = 0 and the radius of the bud isq = 1, one can
then produce a rough numeric fit to the q-series for the interior of the bud. It seems that

lim
t→0+

Pc(t) = 3.0+7.5q +10.8(3)q2+19(2)q3+0(1)q4+13(30)q5+ ... (19)
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Figure 5: Rate of Convergence

This figure shows the rate of convergence, that is, limt→0+ |Sc(t)| −N(t) |A(c)|. We
takeA(c) to be as given in the text for the main cardiod, and equal to precisely 1/2 in
the largest bud. For this numerical calculation, we take it to be zero everywhere else,
thus leading to artifacts outside the main cardiod and bulb,where in factA(c) shouldn’t
be zero. The color ramp has been scaled by -1: i.e. black = 0, green ~= -0.5, red <=
-1.0. There appear to be a number of poles arrayed along the perimeter of the cardiod,
located at the tangent points of the bulbs. The pole at the unicorn horn and at the largest
bulb is clearly visible. These poles indicate areas where the iterated series has a very
difficult time converging to a limit cycle. There is considerably more structure inside of
this image than is immediately evident. The structure is exhibited when one examines
the non-divergent parts ofPc(t) instead.
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Figure 6: Mandelbrot Interior

The image above shows the finite piece in the main bulb, after the divergent piece has
been subtracted. That is, it shows limt→0 |Pc(t)|−N(t)

∣

∣(1/4− c)−3/2/4
∣

∣. It appears to
have dipoles (saddles) arrayed along the perimeter. There don’t seem to be any simple
zeros. The color scheme has been adjusted so that black <= -10, green ~= 0 and red
>= 10. These (multi-)poles visually indicate something that is commonly known: the
series has a hard time converging near the tips of the horns.
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Figure 7: Bud Interior

The sumPc(t) doesn’t have a divergent piece in the large bud. This image shows
limt→0+ |Pc(t)| for the square areaℜc ∈ [−1.25,−0.75]. As can be seen, there is a
considerable amount of structure here. There seem to be poles located on the boundary,
where-ever another bud is tangent to this one. This is of course everywhere, since a
bud is tangent for every possible rational angle. The strength of the pole is somehow
proportionate to the size of the bud; the residue of the polesall seem to be the same
sign. Note there seems to be a sequences of zeros inside the bud. The color ramp has
been logarithmically compressed to highlight the zeros: black = 0, green ~= 10, red >=
100.
A very similar figure results if one graphs the finite part on the main cardiod, after
removing the divergence. That is, the graph for limt→0

∣

∣Pc(t)−N(t)(1/4− c)−3/2/4
∣

∣

in the main cardiod is essentially the same.

12



Figure 8: Divisor Series on the q-disk

The sum|∑∞
n=1 qn/(1−qn)| on the unit disk. The colormap is logarithmically com-

pressed, so that blue represents ares with a value of less than one, and green represents
areas with a value of more than 10.
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The numbers in parenthesis give the uncertainty in the leastsignificant digit. This is a
fairly quick and rough fit; only the values of the first two terms seem certain, and that
the coefficient ofq4 seems to vanish.

1.5 Mobius Transformations on the Disk

Figure 9 shows the real part ofPc(0) in the bud.
Explicit numerical work shows that it does not seem to be a modular form of integer

weight. Nor does it seem to be a modular form of fractional weight. But it sure seems
to “come close”. Lets review what this means.

Modular symmetry on theq-disk is best explored by mapping theq-disk to the
Poincare upper half-plane, applying a Mobius transformation there, and then mapping
back. Given a pointτin the upper half-plane, i.e.ℑτ > 0, one maps to theq-disk with

q = e2iπτ (20)

One can then apply a Mobius transform toτ on the upper half plane:

τ → aτ+ b
cτ+ d

(21)

and then map this back to theq-disk coordinates.
A function f on the upper half-plane is said to be amodular form if

f

(

aτ+ b
cτ+ d

)

= (cτ+ d)k f (τ) (22)

for integersa,b,c,d satisfyingad −bc = 1. The constantk is said to be theweight of
the form. Mapped to the upper half-plane, the interior of thebud does not seem to be
a modular form for any real value ofk. In particular, equation22 doesn’t quite seem to
hold even if the absolute value of each side is taken, although it seems to “come close”
in certain situations.

1.6 Self-Similarity on the Poincare Disk

There is one interesting mapping whose properties are worthreviewing, and that is the
mapping of the upper half-plane to the Poincare disk. This mapping is curious because
it is not infrequent in the literature, and because a periodic function on the upper half-
plane takes the appearance of a self-similar function on thedisk.

The mapping if the upper half-plane to the Poincare disk is given by

w =
i− τ
i+ τ

(23)

This map is a conformal map that takes points in the upper half-plane to points in the
interior of a unit disk. Points on the real number line (points with a zero imaginary
component) are mapped to the edge of the disk. Letτ = x+ iε and takeε → 0; one then
has

w =
i− x
i+ x

=
x2−1+2ix

x2 +1
(24)
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Figure 9: Real Part

This figure shows the real part of limt→0+ Pc(t) in the western bud. The color scheme is
identical to that used to show the modulus. Black areas here represent negative values
for the real part. A similar graph of the divisor series wouldhave more or less a rather
similar look.

15



It is not hard to show that|w| = 1; that isw is on the edge of the disk. A function
which is periodic inτ with integer periodicity will manifest itself with an M-setlike
periodicity on the circumference of the Poincare disk. Specifically, a feature located at
integer values ofx = n will have a specific angular location on the Poincare disk, which
is obtained by solving for the angleθ in

wn = cosθn + isinθn =
n2−1
n2 +1

+ i
2n

n2 +1
(25)

In particular, the regionn ≤ ℜτ ≤ n +1 is mapped to the angular interval[θn,θn+1].
Images constructed by mapping theq-disk to upper half-plane, via equation 20,

will be inherently periodic. The Mobius transform

τ → τ+ m (26)

under theq-disk mapping takes all such values to exactly the same valueof q. An
image on the Poincare disk constructed from the image on theq-disk will have regions
that are identical, by construction.

The figures 10 and 11 show a mapping of the western bud to the Poincare disk.
More precisely, the mapping is actually a half-angle mapping, takingq to expiπτ in-
stead of exp2iπτ, and then re-mapping to the Poincare disk. The result of the half-angle
mapping is that the figures do not have the left-right symmetry τ → −1/τ, but this is
only an artifact of the construction.

1.7 Re-mapping the Cardioid

In order to proceed with the exploration of the interior of the Mandelbrot set as a
modular form, we need to find a way of mapping the the cardioid to the complex
upper half-plane. The most obvious mapping is to express theinterior in terms of the
coordinatesρ andφ with the interior given by

c =

(

ρeiφ

2

)2

− ρeiφ

2
(27)

Thus, the rectangle 0≤ ρ ≤ 1 and−π ≤ φ ≤ πis mapped to the interior of the cardioid.
The result of this mapping is shown in figure12.

The linearized coordinates can be immediately remapped to acircle by using the
coordinates

q = ρeiφ+iπ (28)

where an extra factor of−1 is introduced to left-right reverse the image. This extra flip
is needed to bring the coordinate system precisely into linewith the Poincare punctured
disk coordinates. The punctured disk coordinates are sometimes referred to as the
“nome” coordinates of elliptic geometry. These are defined as follows. Letτ = ω2/ω1

be the so-called “half-period ratio”, whereω1 and ω2 are the periods of an elliptic
function, such as the Weierstrass℘function. Thenτ is a coordinate on the upper half-
plane, withℑτ > 0. The traditional “fundamental region” on the upper half-plane is
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Figure 10: Poincare Disk

This figure shows the real part of limt→0+ Pc(t) in the western bud, remapped onto the
Poincare disk by the half-angle mapping. To be precise, one maps the bud coordinates
to q by equation 18, then mapsq = expiπτ, and finally uses equation 23 to map to the
disk. The color scheme is identical to that used in other graphs.
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Figure 11: Imaginary Part on Poincare Disk

This figure shows the absolute value of the imaginary part of limt→0+ Pc(t) in the west-
ern bud, remapped by means of the half-angle mapping, onto the Poincare disk. The
color scheme is identical to that used in other graphs. As thevalues shown here are by
definition positive, the color black corresponds to small but positive values.
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Figure 12: Linearized Cardioid

The Mandelbrot cardioid interior, using the coordinates ofequation 27, for the range
0≤ ρ ≤ 1 and 0≤ φ ≤ π. Note that each of the “flames” in this picture lean ever so
slightly over to the right, rather than being completely vertical. The color scheme used
is identical to that of the figure 6.

defined as the region−1/2 < ℜτ ≤ 1/2 and|τ| > 1. This coordinate system on the
upper half-plane can be mapped to the punctured disk as

q = eiπτ (29)

with the word “puncture” referring to the fact thatq = 0 never occurs for finite values
of τ. This mapping maps the upper half-plane to values of|q| < 1. The orientation
of this mapping is specifically picked in order to be consistent with standard defini-
tions of modular functions on the punctured disk. For example, the Euler phi-function,
expressed inq coordinates, is

φ(q) =
∞

∏
k=1

(1−qk) (30)

and is show in figure 1.
The cardioid interior should be compared to the image of the Weierstrass invariant

g2, shown in figure 14.
By comparing the figures for the interior of the Mandelbrot set and the Weierstrass

elliptic invariant, a general resemblance becomes painfully apparent, even if not ex-
plicitly demonstrated.

By construction, the function just demonstrated on the interior of the Mandelbrot
set is a real function. To more fully explore the modular symmetry, we really need
a complex function, that is, one with real and imaginary parts. Such a function is
provided by not working with the modulus, but subtracting the divergence directly;
this is explored in the next section.
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Figure 13: Circularized Cardioid

The cardioid interior remapped to the circleρeiφ+iπ. Bulbs on the exterior of the Man-
delbrot set are also visible in this remapping. The color scheme used is identical to that
of the figure 6. The additional factor ofeiπ merely left-right reflects the image.
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Figure 14: Weierstrass invariant

An image of the the real part of the Weierstrass invariantg2 expressed inq coordinates.
This function can be written explicitly as

g2(τ) =
4π4

3

[

1+240
∞

∑
k=1

σ3(k)q
2k

]

which can be re-expressed as a Lambert series

g2(τ) =
4π4

3

[

1+240
∞

∑
k=1

k3q2k

1−q2k

]

This image uses a highly compressed logarithmic color scaleadjusted to resemble that
used for the Mandelbrot interior. Note that the modulus ofg2does not show this lobe
structure; the real and imaginary parts of this function have complementary values.
Graphs ofg3 resemble this figure, as do those of higher terms in the Eisenstein series.
As one goes up the series, the number of lobes increases arithmetically. For example,
the above figure shows three red lobes; the comparable figure for g3 shows four lobes.
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There is also a more subtle issue. It is not clear that the simple cardiod mapping
27 is the correct mapping. If one examines the figures, one cannote a subtle, ever-
so-slightly visible feature. Each of the “flames” in the figure lean slightly over to the
right. Under Mobius transforms, this tilt is preserved, destroying the naive symmetry.
Its possible that the mapping from cardioid toq coordinates is not the right mapping,
and that some other, more complex mapping is required. What this mapping may be is
not clear at this point.

This problem is presumably related to the fact that the buds on the exterior of the
M-set are almost circles, but not quite (with the exception of the main bud to the west).
If one could find a suitable remapping on the exterior, that mapping might presumably
carry over into the interior as well, and vice-versa.

1.8 The Finite Part in the Cardioid

Lets revisit, this time exploring the function

Ξ(c) = lim
t→0

[

Pc(t)−N(t)

(1
4 − c

)3/2

4

]

(31)

Using the mappings given previously,Ξ(c) can be re-expressed asΞ(q) on theq-disk.
It is shown in the figures 15 and 16 and 17.

Despite the remarkably suggestive graphics, it seems thatΞ is not a modular form
either; in particular, I was unable to find a real-valued number k for which even the
less-demanding relation

∣

∣

∣

∣

Ξ
(

aτ+ b
cτ+ d

)∣

∣

∣

∣

=
∣

∣

∣
(cτ+ d)kΞ(τ)

∣

∣

∣
(32)

held true. (Here, the use of the symbolτimplies that the relation was search for on the
upper half-plane and not on the disk). It certainly remains quite possible thatΞ minus
some constant will be a modular form, or that some further transformation ofΞ will
render it so.

1.9 Appendix: Numeric Techniques

This section reviews the numeric techniques applied to perform the series sums. Specif-
ically, some well-known techniques for series acceleration are applied; but these are not
so well known as not to merit review.

Note that the series explored on these pages can be slow to converge, especially near
the ’horns’ of the Mandelbrot set. There are several well-known and established tech-
niques of series acceleration that can improve the convergence. This section quickly
reviews the technique used in this paper.

Consider the sum

A(t) =
∞

∑
n=0

an exp(−t2n2) (33)

Assume that this sum converges in the limit oft → 0+, but possibly slowly. One
can get a much more quickly-converging series by computing,in addition toA(t), the
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Figure 15: Cardioid Finite Part

This figure shows the modulus of the finite part|Ξ(c)|. Some of the rest of the M-set is
visible, but for the most part is blanked out by the subtraction of the divergent term in
the main cardioid. Since this divergent term is inappropriate for the other parts of the
M-set, these other features wash out. The same compressed logarithmic color scheme
is used as in the other illustrations.
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Figure 16: Cardioid Remapped

The finite part|Ξ(q)|, that is,|Ξ(c)| remapped to theq-disk. The color scheme is the
same as in the other images. Note the resemblance to the figure7, but note that there
are also differences between these figures. In particular, the divergence on the right
hand side of this figure is stronger.
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Figure 17: Finite Real Part

The real partℜΞ(q) on theq-disk. The same color scheme is used as elsewhere.
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derivativesdA(t)/dt andd2A(t)/dt2. One then recombines these derivatives to form
the quantity

B(t) = A(t)− t
d
dt

A(t)− t2

2
d2

dt2 A(t) (34)

It is clear that if the limitA(0) exists and is finite, then one has

lim
t→0+

B(t) = lim
t→0+

A(t) (35)

and furthermore, for smallt, one has

B(t) = A(0)+O (t3) (36)

The correctness of equation 36 at first seems naively ’obvious’ but is in fact quite subtle,
and depends on having a series{an} that is ’well-behaved’ in certain ways.

The study of such series and the numerical techniques to sum them falls under
the name of ’series acceleration’ and is a well-developed branch of mathematics in
its own right. It is outside of the scope of this section to review any deeper results.
Suffice it to say that this entire paper is predicated on the assumption that the equation
36 does hold for the sums encountered. This does seem to be thecase, but is hardly
obvious from first principles, especially for points in troublesome sections of the M-
set. By contrast, in the well-behaved areas of the M-set, it is straightforward to verify
that equation 36 holds, and that the resulting sums are accurate for five to ten decimal
places, corresponding tot values in the range of 0.01 to 0.001 for sums with 2 to 50
thousand terms.

Some of the sums in encountered in this paper are divergent. The simplest such
sums have a limit point, namely

lim
n→∞

an = const.6= 0 (37)

in which case one has

A(t) =
const.

t

√

π
4

+O (1) (38)

The extra factor of
√

π/2 comes from the behavior of the Gaussian regulator; that is,

N(t) =
∞

∑
n=0

exp(−t2n2) =
1
t

√

π
4

+O (1) (39)

In order to correctly subtract this linear divergence from adivergent sum, one is advised
to subtractN(t) rather than 1/t directly. This advice comes from the need to subtract
the divergence so that the equation 36 is not violated. In general,N(t) will haveO (1),
O (t) andO (t2) terms as well, any one of which will mess up equation 36 if not properly
accounted for. Thus, in general, the correct way to subtracta divergent term is to form

A′(t) = A(t)−const.N(t) (40)

and then formB′(t) from A′(t) to obtain the finite part. One can perform the subtraction
40 under the summation, or outside of it. Performing it underthe summation potentially
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minimizes round-off errors. Note that these considerations apply to series with limit
cycles as well as limit points. That is, thean need not converge to a point; as long as
they do converge to a limit cycle, this mechanism of subtracting the divergent piece
will work.

One final remark: note that, in general, after removing a linear divergence in a
summation, the next leading order need not be finite, but may be a weaker divergence,
such as a logarithmic divergence. This is presumably the nature of the divergences seen
at the horns of the M-set, for example. On the complex plane, finite sums grow until
they hit a pole. At the pole, the sums are logarithmically divergent.

1.10 Summary

This paper reprises and revises an earlier draft from November 2000, located athttp:
//www.linas.org/art-gallery/spectral/spectral.html.

Although an explicit expression for the apparent modular symmetry was not found,
it is believed that a convincing argument has been made that such a symmetry lurks
within the asymptotic limits of the Mandelbrot iterator. Specifically, the actual sym-
metry appears to most closely resemble that of sums involving the number-theoretic
divisor function. Obtaining an explicit form will open up additional avenues of re-
search, possibly shedding light on the maddening contour ofthe Mandelbrot Set.

What more can we say? This is wild stuff.
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