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Abstract

An exploration of the interior or the Mandelbrot Set and tippearance of
functions appearing to be similar to modular forms. Thisvfies yet another ex-
ample of the close interconnection between the structutbeoModular Group
SL(2,Z) and fractals. The relationship is demonstratedpmdationally and visu-
ally, and not from first principles; visually, the intericgzsembles the Weierstrass
elliptic invariantgy. However, it is a resemblance only; the various explicit ex-
pressions that can be found are shown to not actually be rmofltims. It is
hypothesized that some simple but currently unknown taansdtion will convert
them into modular forms.

The construction of the interior is based on averaging twageterated values
with a spectral-type summation, and then analyzing the p&ytio behavior of the
sum. Leading divergence are easy to explain and removegtha&ining finite parts
hint at modular symmetry.

This is a work in progress. A final conclusion and analysis haisbeen
reached.

This paper is part of a set of chapters that explore the oslsttip between the
real numbers, the modular group, and fractals. Updated ewvided versions of
this monograph can be foundtatt p: / / ww. | i nas. or g/ mat h/ sl 2z. ht n

1 Dedekind Eta and the Mandelbrot Set

XXX This paper may be subject to occasional revision. XXX

Modular forms are a particular kind of function on the comxplpper half-plane
studied in analytic number theory and the theory of ellipticves. A precise definition
of a modular formP] will be given later in this paper. As a simple example, cdesi
the Euler function

o) =1~ (1)
k=1
on the complex plane. It is closely related to the Dedekiradfenction, which is
a modular form. Figure 1 showgq) inside the unit diskq| < 1. Graphs of most
modular forms visually resemble this picture in one way asthar. The exploration
presented in this monograph will be mostly visual, not atget) none-the-less, various
basic expressions will be developed to make the hypothsgsg@licit as possible.



Figure 1: Euler Function

A rendition of the absolute value(q)| of the Euler function on theg-disk. Note the
readily apparent fractal self-similarity. This type offsgimilarity is explicitly associ-
ated with the properties of the modular grde®L(2,Z). A crude general resemblance
to the structure of the Mandelbrot set should be equallyestidT his paper is devoted
to making this vague resemblance into a relationship asretaas possible.



Now consider the Mandelbrot set. By means of a sequence atfdaelow, we
shall uncover a structure inside the Mandelbrot set thataspto be some kind of
modular form. The general development will be as follows finst section develops
a set of series that capture the asymptotic behavior of aatéte function. In the
next section, these series are then applied to the Mandeleradterator, where they
are found to contain divergent and finite terms. The nexti@eatevelops explicit,
exact expressions for the divergent terms. The remainddyegbaper is devoted to an
exploration of the finite terms, and attempts to draw ana®¢p such modular forms
as the Weierstrass elliptic invariagtand to series involving the divisor function. Both
the main cardioid and the large western bulb are exploreeé. petper concludes with
an appendix reviewing the numeric techniques of seriedeat®n.

This paper is an expansion and revision of an earlier papedaht t p: / / www.
linas.org/art-gallery/spectral/spectral.htm.

1.1 Regulated Series

This section reviews the construction of a regulated sefibgse series will be used
to perform a kind of averaging over the values of an iteratextfion; the asymptotic
behavior of an iterated function may be studied in terms ef¢hseries.

Consider the sequendep,as,az, ... }. Then for small positivé, construct the sum

St)=S ae ™ #)
n=0
In the following,we’ll refer to this as theegulated series for the sequence {a,}. For
large class of reasonably behaved sef@g, this sum is finite for all positive values
of t. By reasonably behaved’ we mean a sequence wdiedeesn'’t get exponentially
large with increasing; that is, one where the sum converges.

This sum participates in some interesting number-theorekationships when the
{an} are considered to be the spectrum of an operator. In thefimith we will be
considering the(a,} not as a spectrum, but instead as the iterates of the Mamdelbr
Set. Before doing so, lets quickly review some basic progert

One can define a Dirichlet series

co=5 % ®

which can be easily converted into the first sum with an irgkegansform.

The spectral analysis consists of exploring the behavidh@fum in the limit of
t — 0. Depending on the series, it may diverge. For example, ifake alla, to be
one, the sunN(t) = S 7_oexp(—tn) diverges as 1/t, whilg ;_on exp(—tn) diverges as
1/t2. The corresponding Dirichlet series exhibit poles at1 ands = 2, respectively,
for these sums. The core idea behind spectral analysististlyaneral, one can gain
insight into the structure of the seriéa, }by understanding the analytic structure of the
related series. In other words, instead of studyiag directly, we study the expansion

S(t) = st" 4)



instead.

When engaging in numerical calculations, the Dirichleieseis nearly numerically
intractable, because of its painfully slow convergenceuslbne is instantly motivated
to use the exponential series instead. However, one getgeanneore stable and nu-
merically well-behaved series by considering the Gaugsigualator, namely

ian exp(—t2n?) (5)

There is no harm in using this series for numerical work; i t& related back to
the Dirichlet series through analytic integral transformbeit somewhat more com-
plex ones than the plain exponential series. This, and sameerical subtleties, are
discussed in a later section.

1.2 The Spectral Analysisof the Mandelbrot Set

Now consider the standard Mandelbrot set iteration
Zni1=Z+C (6)
ant the regulated series for this sequence of points

—t2n?

St) = izne (7)

where we've added the subscriptio remind us that this series takes on distinct values
for every pointc € C. For most of the interior of the Mandelbrot set, this sum djes
as 1/t. To normalize this sum, let us define

_t2n2

N(t) = ioe (8)

which also diverges as/i. Figure 2 shows the nature of the divergence by normalizing
against this value. As a practical matter when performingérical computations, it
is more appropriate to léd(t) stand in the place of divergences, rather than to try to
use Yt directly. The utility of this procedure is discussed in détaa later section on
numerical methods.

The first order of business is to provide an explicit exp@sr the divergentterm.
We can do this by considering a related and somewhat monegtieg sum, the sum

over second derivatives af with respect ta. Realizing that each, is parameterized
by ¢, we can take its derivative:

Zni1= %Zn+1 =247+ 1 9)
and P
G = gt =2 (%0t (@)°) (10)



Figure 2: Divergent term

Plot of the divergent term o&:(t). The figure shows lig1 g+ |S(t)| /N(t), where
|x+iy| = /X2 + y2 is the ordinary complex modulus. Black represents a valzexf,
and green a value of 1/2. Points outside of the M-set are@ttplexcluded from this
picture. An explicit expression for this divergent term igam in the text.



Note thatz,, Z, andz, are well defined for all values @fand finiten: they are entire
functions, 'merely’ polynomials i. Note that these polynomials never involyehe
complex conjugate df, and thus all derivatives with respectdare vanishing.

Let us then define the sum

P(t) = izﬁ exp(—t?n?) (11)
Note that
d2
Polt) = 11 (12)

holds for all positive. P.(t) also diverges as/t. Figures 3 and 4 shows the magnitude
and phase of that divergence. By comparing the figures, éaively straightforward
to determine that inside of the main cardiod, the divergemmitofP.(t) is given by

1

i

0 (1) (13)

The divergent term term d#;(t) can be immediately integrated to obtain the diver-
gent term inS;(t) inside the cardiod:

S =N l%—\/%—‘:

If we write this divergent piece a&(c) = 3 — /2 —cthen it is trivial to verify that
|A(c)| = 1/2 on the boundary of the cardioid; that i#\(€?/2—e??/4)| = 1/2 for

all anglesg. The boundary of the cardioid is given byt iy = €?/2 — €29/4, of
course. Next, we note th#t(c) represents a fixed-point of the Mandelbrot iterator:
A(c) = A%(c) +c. Indeed, this should not be a surprise: the divergent terrhef
sum&(t) is in effect the average over over all valueszgf Inside the main bulb, we
have lim_» 2z, = A(c), and so of necessity, the leading divergence of the sum must
be A(c). Similarly, in the large bud on the lefi, converges to a two-cycle, with
Zy— —1/2+iy/c+3/4 andz,;1 — —1/2—i,/c+3/4. The average of these two
values is—1/2, and so we can trivially deduce that jimy+ S(t)/N(t) = —1/2 and
thus that lim_q+ |S(t)| /N(t) = 1/2 which exactly matches our numerical results. In
other buds, the sequence converges to m-cycles. Thus,anhaitls, the divergent term
will be the average over these m values of the limit cycle.viRied one can calculate
this average, then one has an exact expression for the divezg 0fS;(t). Of course,
there are considerable additional difficulties once ong iged the more contorted parts
of the M-set, since the convergence to a limit cycle can beemely slow, thus creating
considerable topological difficulties when reasoning dlibe topology of the M-set
and in particular, the validity of the expansion of termdhia formula 4. The remainder
of this monograph concerns itself with the issue of the rétmavergence to the limit
cycles, which we will find is given by the Dedekind eta.

+o0(1) (14)




Figure 3: Divergent Derivative

This picture shows the divergent term Rf{t), that is, lim_-q+ |P:(t)| /N(t). Red
denotes any value equal or greater than 1, black corresgoradsalue of zero. The
value of this limit in the largest bud to the left is precisegro over the entire bud. For
the next smallest buds (at the top, bottom, and the secortieft), the value seems
to be uniformly 1/30 across the whole bud, although theresdmem to be a slight
gradation which is hard to distinguish from numerical esrdy looking at this image,
we can see that this limit seems to take on other, constaneyn the progressively
smaller buds. The color scheme here has black <= 0.0, blue2=géeen ~= 0.5,
yellow ~= 0.75, red >=1.0. If the values were indeed constast the smaller buds,
this would have some interesting implications on the linyitles for these buds, as
discussed in the text.



Figure 4: Divergent Phase

The phase of P(t) in the Iimit of t — O. That is, it shows
lim;_,o+ arctan(0OPc(t) /OP:(t)). The color scheme is such that blacks, green=0,
red=t1t The rays on the outside of the set correspond to Duoady-&tdirays. Note
the first hint of a modular form-like structure in the larglestb immediately to the left
of the main cardiod.



1.3 FiniteTerms

Let us now turn to the finite remainders. By subtracting awsy divergent pieces,
we are essentially subtracting away the contribution ofthanptotic limit cycle. The
remaining finite parts indicate how the asymptotic behaigi@pproached. If the finite
partis large, this indicates that the iteration took a lomgtto approach the asymptotic
limit. If the finite partis small, then the series convergeds limit cycle quickly. The
figure 5 shows this rate of convergence. Curiously, we fint tha

Jim [S()] - N(1) |ACC)] +[S:(t) — N(H)A(c)] < 0.01 (15)

that is, the divergence of the modulus has the opposite sign the divergence of the
sum. This can only happen if the phase (the argument) of tite fiart is opposite to
the phase of\(c). In other words,

arg(Se(t) — N(HA(C)) ~ —argA(c) (16)

The overall structure at first doesn't look all that inspirinAs before, we can
discern considerably more structure if we exanfag) instead ofS;(t). This reveals
some of the true complexity in the system.

The finite term in the main cardiod is shown in figure 6 and astl@asuperficial
resemblance to the image of the Dedekind zeta/Euler fumstiown in figure 1 should
be immediately apparent.

It is important at this point to note that this last figure skaive modulus taken
first, and then the divergence subtracted afterwards. $histithe same as subtracting
the divergence first, and then taking the modulus. If we subthe divergent complex
term first, then we see in the main cardiod a figure that clagslgmbles that in figure
7, with a complex structure of poles located on the boundany,zeros located inside.

1.4 TheCircular Western Bud

The sums on the main circular bud immediately to the westet#rdioid do not have
a divergent parts; the sums appear to be finite. The budantisrshown in the figure
7.

The bud interior shows a remarkable visual resemblanceetdithisor series

S0 = 3 dme'= 5 19 a7)

constructed from the classic number-theoretic divisocfiom d(n) = gp(n), the num-
ber of divisors ofn. Figure 8 shows the divisor series.
Re-expressing the coordinates on the interior of the bud as

g=4(c+1.0) (18)

so that the center of the bud occurgjat 0 and the radius of the budés= 1, one can
then produce a rough numeric fit to the g-series for the iotefithe bud. It seems that

lim Ps(t) = 3.0+ 7.59+ 10.8(3)g°+ 19(2) g+ 0(1) g* + 13(30)g°+ ... (19)

t—0t



Figure 5: Rate of Convergence

This figure shows the rate of convergence, that is,_lign |S:(t)| — N(t) |A(c)|. We
takeA(c) to be as given in the text for the main cardiod, and equal toiped/ 1/2 in
the largest bud. For this numerical calculation, we take lhé zero everywhere else,
thus leading to artifacts outside the main cardiod and hutiere in factA(c) shouldn't
be zero. The color ramp has been scaled by -1: i.e. black =e@ngt= -0.5, red <=
-1.0. There appear to be a number of poles arrayed along theqier of the cardiod,
located at the tangent points of the bulbs. The pole at theoumhorn and at the largest
bulb is clearly visible. These poles indicate areas whegdtdrated series has a very
difficult time converging to a limit cycle. There is considbty more structure inside of
this image than is immediately evident. The structure isldtdd when one examines
the non-divergent parts &t(t) instead.
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Figure 6: Mandelbrot Interior

The image above shows the finite piece in the main bulb, dfeedivergent piece has
been subtracted. Thatis, it shows{ing|Pc(t)| — N(t) |(1/4—c)~¥/?/4|. It appears to
have dipoles (saddles) arrayed along the perimeter. Tleeréskem to be any simple
zeros. The color scheme has been adjusted so that black sgreldh ~= 0 and red
>=10. These (multi-)poles visually indicate something ieacommonly known: the
series has a hard time converging near the tips of the horns.
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Figure 7: Bud Interior

The sumP;(t) doesn’'t have a divergent piece in the large bud. This imagevsh

lim; o+ |Pc(t)| for the square areBlc € [-1.25,—0.75. As can be seen, there is a
considerable amount of structure here. There seem to be jpokted on the boundary,
where-ever another bud is tangent to this one. This is ofssbaverywhere, since a
bud is tangent for every possible rational angle. The streafjthe pole is somehow

proportionate to the size of the bud; the residue of the palleseem to be the same
sign. Note there seems to be a sequences of zeros insidedh@ tel color ramp has

been logarithmically compressed to highlight the zeroackk 0, green ~= 10, red >=

100.

A very similar figure results if one graphs the finite part oa thain cardiod, after

removing the divergence. That is, the graph for lim|P(t) — N(t)(1/4— c)‘3/2/4|

in the main cardiod is essentially the same.

12



Figure 8: Divisor Series on the g-disk
s "-".-" - -

S

The sum|3y_19"/(1—q")]| on the unit disk. The colormap is logarithmically com-
pressed, so that blue represents ares with a value of lesstigaand green represents
areas with a value of more than 10.
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The numbers in parenthesis give the uncertainty in the tegsificant digit. This is a
fairly quick and rough fit; only the values of the first two tesiseem certain, and that
the coefficient ofy* seems to vanish.

1.5 Mobius Transformationson the Disk

Figure 9 shows the real part B§(0) in the bud.

Explicit numerical work shows that it does not seem to be autardorm of integer
weight. Nor does it seem to be a modular form of fractionalgluei But it sure seems
to “come close”. Lets review what this means.

Modular symmetry on th@-disk is best explored by mapping tlgedisk to the
Poincare upper half-plane, applying a Mobius transforometthere, and then mapping
back. Given a pointin the upper half-plane, i.€lt > 0, one maps to the-disk with

q=e"" (20)

One can then apply a Mobius transforntton the upper half plane:

at+b
T_>cr+d (21)

and then map this back to tlgedisk coordinates.
A function f on the upper half-plane is said to benadular form if

<m+b

CHd) = (cT+d)*f(1) (22)

for integersa, b, c,d satisfyingad — bc = 1. The constari is said to be theveight of
the form. Mapped to the upper half-plane, the interior oflibd does not seem to be
a modular form for any real value &f In particular, equation22 doesn’t quite seem to
hold even if the absolute value of each side is taken, alth@usgpems to “come close”
in certain situations.

1.6 Sdf-Similarity on the Poincare Disk

There is one interesting mapping whose properties are wevtbwing, and that is the
mapping of the upper half-plane to the Poincare disk. Thigpimgy is curious because
it is not infrequent in the literature, and because a peci@giction on the upper half-
plane takes the appearance of a self-similar function oditie

The mapping if the upper half-plane to the Poincare diskvsmgby

T
I
This map is a conformal map that takes points in the uppergiatfe to points in the
interior of a unit disk. Points on the real number line (psinith a zero imaginary

component) are mapped to the edge of the disktkek+ i€ and takee — 0O; one then
has

(23)

Ci-x  x2—1+2ix

W i+ X X241 (24)
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Figure 9: Real Part

This figure shows the real part of ljmg+ Pc(t) in the western bud. The color scheme is
identical to that used to show the modulus. Black areas legpresent negative values
for the real part. A similar graph of the divisor series woli/e more or less a rather
similar look.
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It is not hard to show thalw| = 1; that isw is on the edge of the disk. A function
which is periodic int with integer periodicity will manifest itself with an M-sdike
periodicity on the circumference of the Poincare disk. jpadly, a feature located at
integer values aof = n will have a specific angular location on the Poincare diskictvh
is obtained by solving for the anglein

2_1 2
Wn:cose,ﬁ—isiner,:r]—]ﬂ—i%L

n2+ (25)

In particular, the region < 001 < n+ 1 is mapped to the angular intery@, 6n1].
Images constructed by mapping thealisk to upper half-plane, via equation 20,
will be inherently periodic. The Mobius transform

T—T+m (26)

under theg-disk mapping takes all such values to exactly the same \aflug An
image on the Poincare disk constructed from the image og-ttisk will have regions
that are identical, by construction.

The figures 10 and 11 show a mapping of the western bud to the&ei disk.
More precisely, the mapping is actually a half-angle magpiakingq to expitt in-
stead of exp@tr, and then re-mapping to the Poincare disk. The result ofalfeamgle
mapping is that the figures do not have the left-right symymet —1/1, but this is
only an artifact of the construction.

1.7 Re-mapping the Cardioid

In order to proceed with the exploration of the interior o€ tMandelbrot set as a
modular form, we need to find a way of mapping the the cardioithe complex
upper half-plane. The most obvious mapping is to expresmthgor in terms of the
coordinate® and@ with the interior given by

o (o2) et -

Thus, the rectangle € p <1 and—1nt< @ < 1is mapped to the interior of the cardioid.
The result of this mapping is shown in figure12.
The linearized coordinates can be immediately remappectiaia by using the
coordinates o
q=pe®m (28)

where an extra factor 6f 1 is introduced to left-right reverse the image. This exipa fl
is needed to bring the coordinate system precisely intoditiethe Poincare punctured
disk coordinates. The punctured disk coordinates are soreetreferred to as the
“nome” coordinates of elliptic geometry. These are defiretbows. Lett = wyp/uy

be the so-called “half-period ratio”, whete; and wy are the periods of an elliptic
function, such as the Weierstraséunction. Thert is a coordinate on the upper half-
plane, with(Ot > 0. The traditional “fundamental region” on the upper hdtdne is

16



Figure 10: Poincare Disk

This figure shows the real part of limg+ P:(t) in the western bud, remapped onto the
Poincare disk by the half-angle mapping. To be precise, aqgsrthe bud coordinates

to q by equation 18, then maps= expitt, and finally uses equation 23 to map to the
disk. The color scheme is identical to that used in othertygap

17



Figure 11: maginry Part on Poincare Disk

e

i

=i Lol ey

This figure shows the absolute value of the imaginary paitmf Jo+ Pe(t) in the west-
ern bud, remapped by means of the half-angle mapping, oat®dimcare disk. The
color scheme is identical to that used in other graphs. Asdhees shown here are by
definition positive, the color black corresponds to smatlgmsitive values.
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Figure 12: Linearized Cardioid

The Mandelbrot cardioid interior, using the coordinates@fiation 27, for the range
0<p<1and0< @< T Note that each of the “flames” in this picture lean ever so
slightly over to the right, rather than being completelytioad. The color scheme used
is identical to that of the figure 6.

defined as the regior1/2 < 01 < 1/2 and|t| > 1. This coordinate system on the
upper half-plane can be mapped to the punctured disk as

q=¢€™ (29)

with the word “puncture” referring to the fact thqt= 0 never occurs for finite values
of 1. This mapping maps the upper half-plane to valuefgpk 1. The orientation

of this mapping is specifically picked in order to be consisteith standard defini-

tions of modular functions on the punctured disk. For examgble Euler phi-function,

expressed iig coordinates, is

[ee]

- 1—qof 30
®(q) ﬂ( aQ) (30)

and is show in figure 1.

The cardioid interior should be compared to the image of tle@Wtrass invariant
g2, shown in figure 14.

By comparing the figures for the interior of the Mandelbrdtes®d the Weierstrass
elliptic invariant, a general resemblance becomes pdjnéparent, even if not ex-
plicitly demonstrated.

By construction, the function just demonstrated on theriotef the Mandelbrot
set is a real function. To more fully explore the modular syetny) we really need
a complex function, that is, one with real and imaginary parSuch a function is
provided by not working with the modulus, but subtracting tlivergence directly;
this is explored in the next section.
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Figure 13: Circularized Cardioid

( J
e

\/

The cardioid interior remapped to the cirge®"™. Bulbs on the exterior of the Man-
delbrot set are also visible in this remapping. The coloesuhused is identical to that
of the figure 6. The additional factor ef* merely left-right reflects the image.
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Figure 14: Weierstrass invariant

An image of the the real part of the Weierstrass invamgrexpressed i coordinates.
This function can be written explicitly as

4t
92(1) = 3

14240y cg(k)qz"]
k=1

which can be re-expressed as a Lambert series

art o |3k

This image uses a highly compressed logarithmic color swdjlested to resemble that
used for the Mandelbrot interior. Note that the moduluggfoes not show this lobe
structure; the real and imaginary parts of this functionehasmplementary values.
Graphs ofgs resemble this figure, as do those of higher terms in the Bisierseries.
As one goes up the series, the number of lobes increasematitially. For example,
the above figure shows three red Iobesz; 1the comparable figuge §hows four lobes.



There is also a more subtle issue. It is not clear that thelsiggrdiod mapping
27 is the correct mapping. If one examines the figures, onencéma subtle, ever-
so-slightly visible feature. Each of the “flames” in the figuean slightly over to the
right. Under Mobius transforms, this tilt is preserved,td®gng the naive symmetry.
Its possible that the mapping from cardioidg@oordinates is not the right mapping,
and that some other, more complex mapping is required. Wisabtapping may be is
not clear at this point.

This problem is presumably related to the fact that the budhe exterior of the
M-set are almost circles, but not quite (with the exceptibiine main bud to the west).
If one could find a suitable remapping on the exterior, thgbpivag might presumably
carry over into the interior as well, and vice-versa.

1.8 TheFinitePart in the Cardioid

Lets revisit, this time exploring the function

3/2
=(c)=lim lpcm ~N(t) @] (31)

Using the mappings given previousBc) can be re-expressed aéq) on theg-disk.
It is shown in the figures 15 and 16 and 17.

Despite the remarkably suggestive graphics, it seem<timnhot a modular form
either; in particular, | was unable to find a real-valued nenibfor which even the
less-demanding relation

—(at+b\| K=
=(55g)| |+ ar=m (32)
held true. (Here, the use of the symhohplies that the relation was search for on the
upper half-plane and not on the disk). It certainly remainisegpossible thaE minus
some constant will be a modular form, or that some furthersf@mation of= will
render it so.

1.9 Appendix: Numeric Techniques

This section reviews the numeric techniques applied tayperthe series sums. Specif-
ically, some well-known techniques for series acceleredi@ applied; but these are not
so well known as not to merit review.

Note that the series explored on these pages can be slowmergenespecially near
the horns’ of the Mandelbrot set. There are several wetiviim and established tech-
niques of series acceleration that can improve the conmeggeThis section quickly
reviews the technique used in this paper.

Consider the sum

Alt) = ian exp(—t2n?) (33)

Assume that this sum converges in the limittof- 0, but possibly slowly. One
can get a much more quickly-converging series by compuimagdition toA(t), the
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Figure 15: Cardioid Finite Part

This figure shows the modulus of the finite pjatc)|. Some of the rest of the M-set is
visible, but for the most part is blanked out by the subtoactf the divergent term in

the main cardioid. Since this divergent term is inapprdprfar the other parts of the
M-set, these other features wash out. The same compreggedhmic color scheme

is used as in the other illustrations.
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Figure 16: Cardioid Remapped

The finite par=(q)|, that is,|=(c)| remapped to the-disk. The color scheme is the
same as in the other images. Note the resemblance to the Tighut note that there
are also differences between these figures. In particllardivergence on the right
hand side of this figure is stronger.
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Figure 17: Finite Real Part
ar U

LY.L A

The real partl=(q) on theg-disk. The same color scheme is used as elsewhere.
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derivativesdA(t) /dt andd?A(t)/dt?. One then recombines these derivatives to form
the quantity

B(t) = At) -t EA(t) — g OI—ZA(t) (34)
B dt 2 dt?
Itis clear that if the limitA(0O) exists and is finite, then one has
tLIrcr)L B) = tLIr(r)LA(t) (35)

and furthermore, for smatl one has
B(t) = A(0) + o (t3) (36)

The correctness of equation 36 at first seems naively 'olsVlmut is in fact quite subtle,
and depends on having a ser{eg } that is 'well-behaved’ in certain ways.

The study of such series and the numerical techniques to bam falls under
the name of 'series acceleration’ and is a well-developeadir of mathematics in
its own right. It is outside of the scope of this section toieawany deeper results.
Suffice it to say that this entire paper is predicated on tkaraption that the equation
36 does hold for the sums encountered. This does seem to lbaghebut is hardly
obvious from first principles, especially for points in ttd@some sections of the M-
set. By contrast, in the well-behaved areas of the M-sed,striaightforward to verify
that equation 36 holds, and that the resulting sums are atecfar five to ten decimal
places, corresponding tovalues in the range of 0.01 to 0.001 for sums with 2 to 50
thousand terms.

Some of the sums in encountered in this paper are divergdrg.simplest such
sums have a limit point, namely

r!im a, =const£A0 (37)
in which case one has
const. /Tt
Alt) = \/j+ 0(1) (38)
t 4
The extra factor of/1/2 comes from the behavior of the Gaussian regulator; that is,
N(t) = 3 exp(—t?n?) = }\/ﬁ +0(1) (39)
B n; S tV4

In order to correctly subtract this linear divergence frodivergent sum, one is advised
to subtraciN(t) rather than 1t directly. This advice comes from the need to subtract
the divergence so that the equation 36 is not violated. leggN(t) will have o (1),

o (t) ando (t?) terms as well, any one of which will mess up equation 36 if mopgrly
accounted for. Thus, in general, the correct way to sub&radtergent term is to form

A (t) = A(t) — const.N(t) (40)

and then fornB'(t) from A'(t) to obtain the finite part. One can perform the subtraction
40 under the summation, or outside of it. Performing it urideisummation potentially
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minimizes round-off errors. Note that these considerati@pply to series with limit
cycles as well as limit points. That is, tlag need not converge to a point; as long as
they do converge to a limit cycle, this mechanism of subingcthe divergent piece
will work.

One final remark: note that, in general, after removing aalindivergence in a
summation, the next leading order need not be finite, but neay\lweaker divergence,
such as a logarithmic divergence. This is presumably thereaf the divergences seen
at the horns of the M-set, for example. On the complex planggefsums grow until
they hit a pole. At the pole, the sums are logarithmicallyedjent.

110 Summary

This paper reprises and revises an earlier draft from Noee2®00, located dit t p:
I/www. |inas.org/art-gallery/spectral/spectral.htm.

Although an explicit expression for the apparent modulansetry was not found,
it is believed that a convincing argument has been made tiwdt & symmetry lurks
within the asymptotic limits of the Mandelbrot iterator. egjifically, the actual sym-
metry appears to most closely resemble that of sums invgltie number-theoretic
divisor function. Obtaining an explicit form will open up ditional avenues of re-
search, possibly shedding light on the maddening contotimeoMandelbrot Set.

What more can we say? This is wild stuff.
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